{"title":"USTEP: Structuration des logs en flux grâce à un arbre de recherche évolutif","authors":"Arthur Vervaet, Raja Chiky, Mar Callau-Zori","doi":"10.48550/arXiv.2304.12331","DOIUrl":null,"url":null,"abstract":"Logs record valuable system information at runtime. They are widely used by data-driven approaches for development and monitoring purposes. Parsing log messages to structure their format is a classic preliminary step for log-mining tasks. As they appear upstream, parsing operations can become a processing time bottleneck for downstream applications. The quality of parsing also has a direct influence on their efficiency. Here, we propose USTEP, an online log parsing method based on an evolving tree structure. Evaluation results on a wide panel of datasets coming from different real-world systems demonstrate USTEP superiority in terms of both effectiveness and robustness when compared to other online methods.","PeriodicalId":240257,"journal":{"name":"European Grid Conference","volume":"7 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Grid Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.12331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Logs record valuable system information at runtime. They are widely used by data-driven approaches for development and monitoring purposes. Parsing log messages to structure their format is a classic preliminary step for log-mining tasks. As they appear upstream, parsing operations can become a processing time bottleneck for downstream applications. The quality of parsing also has a direct influence on their efficiency. Here, we propose USTEP, an online log parsing method based on an evolving tree structure. Evaluation results on a wide panel of datasets coming from different real-world systems demonstrate USTEP superiority in terms of both effectiveness and robustness when compared to other online methods.