Beta Regression for Modeling a Covariate Adjusted ROC

Sarah A. Stanley, J. Tubbs
{"title":"Beta Regression for Modeling a Covariate Adjusted ROC","authors":"Sarah A. Stanley, J. Tubbs","doi":"10.11648/J.SJAMS.20180604.11","DOIUrl":null,"url":null,"abstract":"Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"1980 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20180604.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Background : Several regression methodologies have been developed to model the ROC as a function of covariate effects within the generalized linear model (GLM) framework. In this article, we present an alternative to two existing parametric and semi-parametric methods for estimating a covariate adjusted ROC. The existing methods utilize GLMs for binary data when the expected value equals the probability that the test result for a diseased subject exceeds that of a non-diseased subject with the same covariate values. This probability is referred to as the placement value. Objective : The new method directly models the placement values through beta regression. Methods : We compare the proposed method to the existing models with simulation and a clinical study. Conclusion : The proposed method performs favorably with the commonly used parametric method and has better performance than the semi-parametric method when modeling the covariate adjusted ROC regression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用Beta回归建模协变量校正ROC
背景:在广义线性模型(GLM)框架内,已经开发了几种回归方法来将ROC建模为协变量效应的函数。在本文中,我们提出了一种替代现有的两种参数和半参数方法来估计协变量调整的ROC。当期望值等于具有相同协变量值的患病受试者的测试结果超过非患病受试者的测试结果的概率时,现有方法对二元数据使用glm。这个概率被称为放置值。目的:利用β回归直接建立放置值模型。方法:将该方法与现有模型进行仿真和临床研究比较。结论:在协变量调整后的ROC回归建模中,该方法优于常用的参数方法,且优于半参数方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of the Non-Linear Diffussion Equations CPV Monitoring - Optimization of Control Chart Design by Reducing the False Alarm Rate and Nuisance Signal On Different Extraction Methods of Factor Analysis Improvement of the Raabe-Duhamel Convergence Criterion Generalized Volatility Modelling of Stock Returns of Selected Nigerian Oil and Gas Companies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1