Information Subspace-Based Fusion for Vehicle Classification

Sally Ghanem, Ashkan Panahi, H. Krim, R. Kerekes, J. Mattingly
{"title":"Information Subspace-Based Fusion for Vehicle Classification","authors":"Sally Ghanem, Ashkan Panahi, H. Krim, R. Kerekes, J. Mattingly","doi":"10.23919/EUSIPCO.2018.8553445","DOIUrl":null,"url":null,"abstract":"Union of Subspaces (UoS) is a new paradigm for signal modeling and processing, which is capable of identifying more complex trends in data sets than simple linear models. Relying on a bi-sparsity pursuit framework and advanced nonsmooth optimization techniques, the Robust Subspace Recovery (RoSuRe) algorithm was introduced in the recent literature as a reliable and numerically efficient algorithm to unfold unions of subspaces. In this study, we apply RoSuRe to prospect the structure of a data type (e.g. sensed data on vehicle through passive audio and magnetic observations). Applying RoSuRe to the observation data set, we obtain a new representation of the time series, respecting an underlying UoS model. We subsequently employ Spectral Clustering on the new representations of the data set. The classification performance on the dataset shows a considerable improvement compared to direct application of other unsupervised clustering methods.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Union of Subspaces (UoS) is a new paradigm for signal modeling and processing, which is capable of identifying more complex trends in data sets than simple linear models. Relying on a bi-sparsity pursuit framework and advanced nonsmooth optimization techniques, the Robust Subspace Recovery (RoSuRe) algorithm was introduced in the recent literature as a reliable and numerically efficient algorithm to unfold unions of subspaces. In this study, we apply RoSuRe to prospect the structure of a data type (e.g. sensed data on vehicle through passive audio and magnetic observations). Applying RoSuRe to the observation data set, we obtain a new representation of the time series, respecting an underlying UoS model. We subsequently employ Spectral Clustering on the new representations of the data set. The classification performance on the dataset shows a considerable improvement compared to direct application of other unsupervised clustering methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息子空间的车辆分类融合
子空间联合(UoS)是信号建模和处理的一种新范式,它能够识别数据集中比简单线性模型更复杂的趋势。基于双稀疏追求框架和先进的非光滑优化技术,鲁棒子空间恢复(RoSuRe)算法作为一种可靠且数值高效的展开子空间并集的算法在最近的文献中被引入。在本研究中,我们应用RoSuRe来预测数据类型的结构(例如,通过无源音频和磁观测在车辆上感知数据)。将RoSuRe应用于观测数据集,我们获得了时间序列的新表示,尊重底层UoS模型。我们随后在数据集的新表示上使用谱聚类。与直接应用其他无监督聚类方法相比,该方法在数据集上的分类性能有了相当大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1