A path-sensitively sliced control flow graph

J. Jaffar, V. Murali
{"title":"A path-sensitively sliced control flow graph","authors":"J. Jaffar, V. Murali","doi":"10.1145/2635868.2635884","DOIUrl":null,"url":null,"abstract":"We present a new graph representation of programs with specified target variables. These programs are intended to be processed by third-party applications querying target variables such as testers and verifiers. The representation embodies two concepts. First, it is path-sensitive in the sense that multiple nodes representing one program point may exist so that infeasible paths can be excluded. Second, and more importantly, it is sliced with respect to the target variables. This key step is founded on a novel idea introduced in this paper, called ``Tree Slicing'', and on the fact that slicing is more effective when there is path sensitivity. Compared to the traditional Control Flow Graph (CFG), the new graph may be bigger (due to path-sensitivity) or smaller (due to slicing). We show that it is not much bigger in practice, if at all. The main result however concerns its quality: third-party testers and verifiers perform substantially better on the new graph compared to the original CFG.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"38 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2635868.2635884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We present a new graph representation of programs with specified target variables. These programs are intended to be processed by third-party applications querying target variables such as testers and verifiers. The representation embodies two concepts. First, it is path-sensitive in the sense that multiple nodes representing one program point may exist so that infeasible paths can be excluded. Second, and more importantly, it is sliced with respect to the target variables. This key step is founded on a novel idea introduced in this paper, called ``Tree Slicing'', and on the fact that slicing is more effective when there is path sensitivity. Compared to the traditional Control Flow Graph (CFG), the new graph may be bigger (due to path-sensitivity) or smaller (due to slicing). We show that it is not much bigger in practice, if at all. The main result however concerns its quality: third-party testers and verifiers perform substantially better on the new graph compared to the original CFG.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
路径敏感的切片控制流图
我们提出了具有指定目标变量的程序的一种新的图表示。这些程序旨在由第三方应用程序处理,这些应用程序查询目标变量,如测试人员和验证者。这种表示体现了两个概念。首先,它是路径敏感的,即可能存在代表一个程序点的多个节点,因此可以排除不可行的路径。其次,更重要的是,它是相对于目标变量的切片。这一关键步骤是建立在本文引入的一种称为“树切片”的新思想基础上的,并且当存在路径灵敏度时,切片更有效。与传统的控制流图(CFG)相比,新图可能更大(由于路径敏感性)或更小(由于切片)。我们表明,在实践中,如果有的话,它并没有大得多。然而,主要的结果与它的质量有关:第三方测试人员和验证者在新图形上的表现比原来的CFG要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Omen+: a precise dynamic deadlock detector for multithreaded Java libraries Improving the software testing skills of novices during onboarding through social transparency Counterexample guided abstraction refinement of product-line behavioural models A tool suite for the model-driven software engineering of cyber-physical systems Statistical symbolic execution with informed sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1