Pedro Messias, Maria João Sousa, Alexandra Moutinho
{"title":"Color-based Superpixel Semantic Segmentation for Fire Data Annotation","authors":"Pedro Messias, Maria João Sousa, Alexandra Moutinho","doi":"10.1109/FUZZ45933.2021.9494421","DOIUrl":null,"url":null,"abstract":"Image-based fire detection is a safety-critical task, which requires high-quality datasets to ensure performance guarantees in real scenarios. Automatic fire detection systems are in ever-increasing demand, but the limited number and size of open datasets, and lack of annotations, hinder model development. Solving this issue requires that experts dedicate a significant time to classify and segment fire events in image datasets. Towards building large-scale curated datasets, this paper presents a data annotation method that leverages semantic segmentation based on superpixel aggregation and color features. The approach introduces interpretable linguistic models that generate pixel-wise fire segmentation and annotations, which are explainable through simple fine-tunable rules that can support subsequent annotation validation by fire domain experts. The performance of the proposed algorithm is evaluated for relevant scenarios using a publicly available dataset, namely through the assessment of the segmentation quality and the labeling of fire color categories. The outcomes of this approach pave the way for creating large-scale datasets that can empower future deployments of learning-based architectures in fire detection systems.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"27 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Image-based fire detection is a safety-critical task, which requires high-quality datasets to ensure performance guarantees in real scenarios. Automatic fire detection systems are in ever-increasing demand, but the limited number and size of open datasets, and lack of annotations, hinder model development. Solving this issue requires that experts dedicate a significant time to classify and segment fire events in image datasets. Towards building large-scale curated datasets, this paper presents a data annotation method that leverages semantic segmentation based on superpixel aggregation and color features. The approach introduces interpretable linguistic models that generate pixel-wise fire segmentation and annotations, which are explainable through simple fine-tunable rules that can support subsequent annotation validation by fire domain experts. The performance of the proposed algorithm is evaluated for relevant scenarios using a publicly available dataset, namely through the assessment of the segmentation quality and the labeling of fire color categories. The outcomes of this approach pave the way for creating large-scale datasets that can empower future deployments of learning-based architectures in fire detection systems.