On the prediction of electric vehicles energy demand by using vehicular networks

Vicente Torres-Sanz, Julio A. Sanguesa, Piedad Garrido, F. Martinez, C. Calafate, J. Márquez-Barja
{"title":"On the prediction of electric vehicles energy demand by using vehicular networks","authors":"Vicente Torres-Sanz, Julio A. Sanguesa, Piedad Garrido, F. Martinez, C. Calafate, J. Márquez-Barja","doi":"10.1109/WD.2017.7918143","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a comprehensive architecture based on vehicular communication technologies, considering vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. In addition, we present a study about EVs charging load. Our proposal addresses three main issues: (i) knowledge of the number of vehicles that are going to recharge their batteries at a particular point and instant, (ii) knowledge of the available charging points, and (iii) predicting the electricity demand. Results show that our system is able to predict the electricity requirements of the EVs that are expected to recharge their batteries up to 180 minutes in advance.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"275 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a comprehensive architecture based on vehicular communication technologies, considering vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. In addition, we present a study about EVs charging load. Our proposal addresses three main issues: (i) knowledge of the number of vehicles that are going to recharge their batteries at a particular point and instant, (ii) knowledge of the available charging points, and (iii) predicting the electricity demand. Results show that our system is able to predict the electricity requirements of the EVs that are expected to recharge their batteries up to 180 minutes in advance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于车联网的电动汽车能源需求预测研究
在本文中,我们提出了一种基于车辆通信技术的综合架构,考虑了车辆对车辆(V2V)和车辆对基础设施(V2I)通信。此外,我们还对电动汽车充电负荷进行了研究。我们的建议解决了三个主要问题:(i)了解在特定时间点充电的车辆数量,(ii)了解可用的充电点,以及(iii)预测电力需求。结果表明,我们的系统能够提前180分钟预测预计充电的电动汽车的电力需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation of Receiver Directed Transmission protocol with a single transceiver in MANETs Joint channel sensing and power control scheme for cognitive radio wireless sensor networks Self-similarity of data traffic in a Delay Tolerant Network Give me a hint: An ID-free small data transmission protocol for dense IoT devices 5G massive MIMO with digital beamforming and two-stage channel estimation for low SHF band
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1