Shohei Yoshioka, S. Suyama, Tatsuki Okuyama, Jun Mashino, Y. Okumura
{"title":"5G massive MIMO with digital beamforming and two-stage channel estimation for low SHF band","authors":"Shohei Yoshioka, S. Suyama, Tatsuki Okuyama, Jun Mashino, Y. Okumura","doi":"10.1109/WD.2017.7918124","DOIUrl":null,"url":null,"abstract":"The fifth-generation (5G) mobile communication system will utilize higher frequency bands with wider bandwidth for super high bit rate and large system capacity. Massive multiple-input multiple-output (Massive MIMO) beamforming (BF) technology has attracted much attention to compensate larger path-loss of a disadvantage at higher frequency bands. In low-SHF bands, approximately 100 MHz bandwidth is assumed, thus fully-digital Massive MIMO having flexibility of BF can be applied. In this paper, we modify joint processing of analog fixed BF and channel state information (CSI)-based precoding (called FBCP), which is a hybrid BF technology, to fully-digital method (called Digital-FBCP). Although conventional studies about Massive MIMO with BF do not take account of channel estimation (CE) in detail, this paper describes two-stage CE required for multi-user (MU) Massive MIMO with BF. Throughput performance is evaluated by link level computer simulation in consideration of the reference design and pilot insertion loss. This paper shows that Digital-FBCP achieves almost equal or better throughput performance than conventional precoding (PR) without fixed BF.","PeriodicalId":179998,"journal":{"name":"2017 Wireless Days","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2017.7918124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
The fifth-generation (5G) mobile communication system will utilize higher frequency bands with wider bandwidth for super high bit rate and large system capacity. Massive multiple-input multiple-output (Massive MIMO) beamforming (BF) technology has attracted much attention to compensate larger path-loss of a disadvantage at higher frequency bands. In low-SHF bands, approximately 100 MHz bandwidth is assumed, thus fully-digital Massive MIMO having flexibility of BF can be applied. In this paper, we modify joint processing of analog fixed BF and channel state information (CSI)-based precoding (called FBCP), which is a hybrid BF technology, to fully-digital method (called Digital-FBCP). Although conventional studies about Massive MIMO with BF do not take account of channel estimation (CE) in detail, this paper describes two-stage CE required for multi-user (MU) Massive MIMO with BF. Throughput performance is evaluated by link level computer simulation in consideration of the reference design and pilot insertion loss. This paper shows that Digital-FBCP achieves almost equal or better throughput performance than conventional precoding (PR) without fixed BF.