{"title":"A new decryption algorithm of the quasi-cyclic low-density parity-check codes based McEliece cryptosystem","authors":"Shuo Zhang, Wenhui Cao, Angyang Li, Wenjie Dong, Liwei Shao","doi":"10.1109/ICCSN.2016.7586588","DOIUrl":null,"url":null,"abstract":"The McEliece public-key cryptosystem is believed to resist quantum attacks, but has not been used because of the extremely large public key size. In order to decrease the public key size, quasi-cyclic low-density parity-check (QC-LDPC) codes were used instead of Goppa codes in McEliece cryptosystem. A modified version of QC-LDPC McEliece is quasi-cyclic moderate density parity-check (QC-MDPC) McEliece, which focuses on ensuring fixed security level other than error-correction capability. The QC-MDPC McEliece scheme furtherly reduces the public key size at the cost of higher decryption complexity. However, the decryption algorithm of QC-LDPC McEliece variant has not been optimized. In this paper, we proposed a new decryption algorithm of the QC-LDPC McEliece variant. With the decryption algorithm we proposed, the key size reduces about 20% than the original algorithm, even 8% smaller than QC-MDPC variant.","PeriodicalId":158877,"journal":{"name":"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)","volume":"73 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2016.7586588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The McEliece public-key cryptosystem is believed to resist quantum attacks, but has not been used because of the extremely large public key size. In order to decrease the public key size, quasi-cyclic low-density parity-check (QC-LDPC) codes were used instead of Goppa codes in McEliece cryptosystem. A modified version of QC-LDPC McEliece is quasi-cyclic moderate density parity-check (QC-MDPC) McEliece, which focuses on ensuring fixed security level other than error-correction capability. The QC-MDPC McEliece scheme furtherly reduces the public key size at the cost of higher decryption complexity. However, the decryption algorithm of QC-LDPC McEliece variant has not been optimized. In this paper, we proposed a new decryption algorithm of the QC-LDPC McEliece variant. With the decryption algorithm we proposed, the key size reduces about 20% than the original algorithm, even 8% smaller than QC-MDPC variant.