Monophone and Triphone Acoustic Phonetic Model for Kannada Speech Recognition System

T. Kumar, Adithya Jayan, Shreenidhi Bhat, M. Anvith, A. V. Narasimhadhan
{"title":"Monophone and Triphone Acoustic Phonetic Model for Kannada Speech Recognition System","authors":"T. Kumar, Adithya Jayan, Shreenidhi Bhat, M. Anvith, A. V. Narasimhadhan","doi":"10.1109/wispnet54241.2022.9767115","DOIUrl":null,"url":null,"abstract":"The automatic Speech Recognition system (ASR) is the most widely used application in the speech domain. ASR systems generate text data from spoken utterances without manual intervention. In this work, we build an ASR system for the Kannada language. For building the proposed system, we extract Mel Frequency Cepstral Coefficients (MFCC) features from the audio data, and the Kannada language model is developed using corresponding labels. The dictionary generation and phonetic labelings are automated. Recognition performance is compared for both monophonic and triphone models. The word error rate of 15.73 % and the sentence error rate of 55.5 % are achieved for the triphone model. Comparatively, the triphone model gives a better performance than the monophonic model.","PeriodicalId":432794,"journal":{"name":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","volume":"4 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wispnet54241.2022.9767115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The automatic Speech Recognition system (ASR) is the most widely used application in the speech domain. ASR systems generate text data from spoken utterances without manual intervention. In this work, we build an ASR system for the Kannada language. For building the proposed system, we extract Mel Frequency Cepstral Coefficients (MFCC) features from the audio data, and the Kannada language model is developed using corresponding labels. The dictionary generation and phonetic labelings are automated. Recognition performance is compared for both monophonic and triphone models. The word error rate of 15.73 % and the sentence error rate of 55.5 % are achieved for the triphone model. Comparatively, the triphone model gives a better performance than the monophonic model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卡纳达语语音识别系统的单声道和三声道声学语音模型
自动语音识别系统(ASR)是语音领域应用最为广泛的一种系统。ASR系统从语音中生成文本数据,无需人工干预。在这项工作中,我们建立了一个卡纳达语的ASR系统。为了构建该系统,我们从音频数据中提取Mel频率倒谱系数(MFCC)特征,并使用相应的标签建立卡纳达语模型。字典生成和语音标注都是自动化的。比较了单声道和三声道模型的识别性能。该模型的单词错误率为15.73%,句子错误率为55.5%。相比之下,三音模型比单音模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modified Simultaneous Weighted – OMP Based Channel Estimation and Hybrid Precoding for Massive MIMO Systems Zero Padded Dual Index Trimode OFDM-IM Diabetes Mellitus Prediction Based on Enhanced K Strange Points Clustering and Classification Mobile Sink Data Gathering and Path Determination in Wireless Sensor Networks: A Review A Study on Visual Based Optical Sensor for Depth Sense Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1