Modelling multiple REIT indices using TAR models based on aggregation functions

J. Komorník, M. Komorníková
{"title":"Modelling multiple REIT indices using TAR models based on aggregation functions","authors":"J. Komorník, M. Komorníková","doi":"10.1109/SISY.2014.6923613","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to compare descriptive and predictive qualities of multivariate TAR models with threshold variables obtained via aggregation functions versus one-dimensional TAR models with endogenous as well as exogenous threshold variables. Time series of REIT indexes of 5 selected G7 countries (USA, Japan, Great Britain, France, Canada) were modelled. They manifest similar behaviour in the considered time period, January 1, 2000-May 8, 2012, divided into 3 sub-periods determined by the recent global financial markets crisis (July 1, 2008-April 30, 2009). The multivariate TAR models with threshold variables constructed via aggregation functions have in all cases better descriptive properties and in most cases they also show better prediction properties. A new subclass of those models, based on the OMA type of aggregation functions, exhibit promising properties both with respect to their descriptive and predictive performance.","PeriodicalId":277041,"journal":{"name":"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)","volume":"73 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 12th International Symposium on Intelligent Systems and Informatics (SISY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISY.2014.6923613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to compare descriptive and predictive qualities of multivariate TAR models with threshold variables obtained via aggregation functions versus one-dimensional TAR models with endogenous as well as exogenous threshold variables. Time series of REIT indexes of 5 selected G7 countries (USA, Japan, Great Britain, France, Canada) were modelled. They manifest similar behaviour in the considered time period, January 1, 2000-May 8, 2012, divided into 3 sub-periods determined by the recent global financial markets crisis (July 1, 2008-April 30, 2009). The multivariate TAR models with threshold variables constructed via aggregation functions have in all cases better descriptive properties and in most cases they also show better prediction properties. A new subclass of those models, based on the OMA type of aggregation functions, exhibit promising properties both with respect to their descriptive and predictive performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于聚合函数的TAR模型对多个REIT指数进行建模
本文的目的是比较具有聚合函数获得的阈值变量的多元TAR模型与具有内源性和外源性阈值变量的一维TAR模型的描述和预测质量。选取G7 5个国家(美国、日本、英国、法国、加拿大)的REIT指数进行时间序列建模。在2000年1月1日至2012年5月8日这段时间内,它们表现出类似的行为,并根据最近的全球金融市场危机(2008年7月1日至2009年4月30日)划分为3个子时期。通过聚合函数构建的具有阈值变量的多变量TAR模型在所有情况下都具有更好的描述性,并且在大多数情况下也显示出更好的预测特性。这些模型的一个新的子类,基于OMA类型的聚合函数,在描述和预测性能方面都表现出有希望的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Advanced mobile communication and media devices and applications in the base of higher education Structural and semantic markup of complaints: Case study of Serbian Judiciary Time optimal control of ground vehicles Construction of uninorms on bounded lattices Central g-moments of the order n for random variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1