{"title":"ROS/Gazebo-Based Simulation of Quadcopter Aircrafts","authors":"Claudio Sciortino, A. Fagiolini","doi":"10.1109/RTSI.2018.8548411","DOIUrl":null,"url":null,"abstract":"The main purpose of this work is to present a tutorial description on how to design and develop an observer, which is capable of estimating the position and the orientation of a drone commanded by a controller, whose shape and structure are unknown. Starting from Newton's and Euler's laws, a mathematical model describing the dynamics of a quadcopter has first been obtained. By linearizing this model it is possible to implement a Luenberger observer and validate it with simulations in a Linux environment, thanks to the use of the Ardupilot controller and the Gazebo simulator. Finally, starting from the results obtained from the simulation, it is possible to evaluate the error made in the estimation by observer and reconstruct the trajectory traveled by the drone during the simulation.","PeriodicalId":363896,"journal":{"name":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","volume":"70 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 4th International Forum on Research and Technology for Society and Industry (RTSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSI.2018.8548411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The main purpose of this work is to present a tutorial description on how to design and develop an observer, which is capable of estimating the position and the orientation of a drone commanded by a controller, whose shape and structure are unknown. Starting from Newton's and Euler's laws, a mathematical model describing the dynamics of a quadcopter has first been obtained. By linearizing this model it is possible to implement a Luenberger observer and validate it with simulations in a Linux environment, thanks to the use of the Ardupilot controller and the Gazebo simulator. Finally, starting from the results obtained from the simulation, it is possible to evaluate the error made in the estimation by observer and reconstruct the trajectory traveled by the drone during the simulation.