{"title":"FDML","authors":"Yaochen Hu, Di Niu, Jianming Yang, Shengping Zhou","doi":"10.1145/3292500.3330765","DOIUrl":null,"url":null,"abstract":"Most current distributed machine learning systems try to scale up model training by using a data-parallel architecture that divides the computation for different samples among workers. We study distributed machine learning from a different motivation, where the information about the same samples, e.g., users and objects, are owned by several parities that wish to collaborate but do not want to share raw data with each other. We propose an asynchronous stochastic gradient descent (SGD) algorithm for such a feature distributed machine learning (FDML) problem, to jointly learn from distributed features, with theoretical convergence guarantees under bounded asynchrony. Our algorithm does not require sharing the original features or even local model parameters between parties, thus preserving the data locality. The system can also easily incorporate differential privacy mechanisms to preserve a higher level of privacy. We implement the FDML system in a parameter server architecture and compare our system with fully centralized learning (which violates data locality) and learning based on only local features, through extensive experiments performed on both a public data set a9a, and a large dataset of 5,000,000 records and 8700 decentralized features from three collaborating apps at Tencent including Tencent MyApp, Tecent QQ Browser and Tencent Mobile Safeguard. Experimental results have demonstrated that the proposed FDML system can be used to significantly enhance app recommendation in Tencent MyApp by leveraging user and item features from other apps, while preserving the locality and privacy of features in each individual app to a high degree.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"6 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Most current distributed machine learning systems try to scale up model training by using a data-parallel architecture that divides the computation for different samples among workers. We study distributed machine learning from a different motivation, where the information about the same samples, e.g., users and objects, are owned by several parities that wish to collaborate but do not want to share raw data with each other. We propose an asynchronous stochastic gradient descent (SGD) algorithm for such a feature distributed machine learning (FDML) problem, to jointly learn from distributed features, with theoretical convergence guarantees under bounded asynchrony. Our algorithm does not require sharing the original features or even local model parameters between parties, thus preserving the data locality. The system can also easily incorporate differential privacy mechanisms to preserve a higher level of privacy. We implement the FDML system in a parameter server architecture and compare our system with fully centralized learning (which violates data locality) and learning based on only local features, through extensive experiments performed on both a public data set a9a, and a large dataset of 5,000,000 records and 8700 decentralized features from three collaborating apps at Tencent including Tencent MyApp, Tecent QQ Browser and Tencent Mobile Safeguard. Experimental results have demonstrated that the proposed FDML system can be used to significantly enhance app recommendation in Tencent MyApp by leveraging user and item features from other apps, while preserving the locality and privacy of features in each individual app to a high degree.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1