Spatial Weibull Regression with Multivariate Log Gamma Process and Its Applications to China Earthquake Economic Loss

Hou‐Cheng Yang, Lijiang Geng, Yishu Xue, Guanyu Hu
{"title":"Spatial Weibull Regression with Multivariate Log Gamma Process and Its Applications to China Earthquake Economic Loss","authors":"Hou‐Cheng Yang, Lijiang Geng, Yishu Xue, Guanyu Hu","doi":"10.4310/21-SII672","DOIUrl":null,"url":null,"abstract":"Bayesian spatial modeling of heavy-tailed distributions has become increasingly popular in various areas of science in recent decades. We propose a Weibull regression model with spatial random effects for analyzing extreme economic loss. Model estimation is facilitated by a computationally efficient Bayesian sampling algorithm utilizing the multivariate Log-Gamma distribution. Simulation studies are carried out to demonstrate better empirical performances of the proposed model than the generalized linear mixed effects model. An earthquake data obtained from Yunnan Seismological Bureau, China is analyzed. Logarithm of the Pseudo-marginal likelihood values are obtained to select the optimal model, and Value-at-risk, expected shortfall, and tail-value-at-risk based on posterior predictive distribution of the optimal model are calculated under different confidence levels.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"15 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/21-SII672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Bayesian spatial modeling of heavy-tailed distributions has become increasingly popular in various areas of science in recent decades. We propose a Weibull regression model with spatial random effects for analyzing extreme economic loss. Model estimation is facilitated by a computationally efficient Bayesian sampling algorithm utilizing the multivariate Log-Gamma distribution. Simulation studies are carried out to demonstrate better empirical performances of the proposed model than the generalized linear mixed effects model. An earthquake data obtained from Yunnan Seismological Bureau, China is analyzed. Logarithm of the Pseudo-marginal likelihood values are obtained to select the optimal model, and Value-at-risk, expected shortfall, and tail-value-at-risk based on posterior predictive distribution of the optimal model are calculated under different confidence levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元对数过程空间威布尔回归及其在中国地震经济损失分析中的应用
近几十年来,重尾分布的贝叶斯空间建模在各个科学领域日益流行。本文提出了一个具有空间随机效应的威布尔回归模型,用于分析极端经济损失。利用多变量Log-Gamma分布的计算效率高的贝叶斯抽样算法促进了模型估计。仿真研究表明,该模型的经验性能优于广义线性混合效应模型。对云南地震局的一次地震资料进行了分析。对拟边际似然值取对数,选择最优模型,并在不同置信水平下,计算基于最优模型后验预测分布的风险值、期望缺口和尾部风险值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1