Mongolian Named Entity Recognition using suffixes segmentation

Weihua Wang, F. Bao, Guanglai Gao
{"title":"Mongolian Named Entity Recognition using suffixes segmentation","authors":"Weihua Wang, F. Bao, Guanglai Gao","doi":"10.1109/IALP.2015.7451558","DOIUrl":null,"url":null,"abstract":"Mongolian is an agglutinative language with the complex morphological structures. Building an accurate Named Entity Recognition (NER) system for Mongolian is a challenging and meaningful work. This paper analyzes the characteristic of Mongolian suffixes using Narrow Non-Break Space and investigates Mongolian NER system under three methods in the Condition Random Field framework. The experiment shows that segmenting each suffix into an individual token achieves the best performance than both without segmenting and using the suffixes as a feature. Our approach obtains an F-measure = 82.71. It is appropriate for the Mongolian large scale vocabulary NER. This research also makes sense to other agglutinative languages NER systems.","PeriodicalId":256927,"journal":{"name":"2015 International Conference on Asian Language Processing (IALP)","volume":"26 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2015.7451558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Mongolian is an agglutinative language with the complex morphological structures. Building an accurate Named Entity Recognition (NER) system for Mongolian is a challenging and meaningful work. This paper analyzes the characteristic of Mongolian suffixes using Narrow Non-Break Space and investigates Mongolian NER system under three methods in the Condition Random Field framework. The experiment shows that segmenting each suffix into an individual token achieves the best performance than both without segmenting and using the suffixes as a feature. Our approach obtains an F-measure = 82.71. It is appropriate for the Mongolian large scale vocabulary NER. This research also makes sense to other agglutinative languages NER systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于后缀分割的蒙古语命名实体识别
蒙古语是一种形态结构复杂的黏着语。建立准确的蒙古语命名实体识别系统是一项具有挑战性和意义的工作。本文利用窄不间断空间分析了蒙古语词缀的特征,并在条件随机场框架下用三种方法研究了蒙古语NER系统。实验表明,将每个后缀分割成一个单独的令牌比不分割和使用后缀作为特征获得了最好的性能。我们的方法得到f值= 82.71。它适用于蒙古语的大规模词汇NER。本研究对其他黏着语言的NER系统也有一定的借鉴意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint Chinese word segmentation and punctuation prediction using deep recurrent neural network for social media data Rumor diffusion purpose analysis from social attribute to social content Multilingual Viewpoint Detection from news comments Machine translation from Japanese and French to Vietnamese, the difference among language families Japanese sentence compression using Simple English Wikipedia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1