Biogeochemical Engineering: Technologies for Managing Environmental Risks

V. Bashkin
{"title":"Biogeochemical Engineering: Technologies for Managing Environmental Risks","authors":"V. Bashkin","doi":"10.21926/aeer.2204040","DOIUrl":null,"url":null,"abstract":"This research aims at one of the most important economic and environmental problems - the elimination of the consequences in case of emergency spills while cleaning petroleum products. The objectives of the study include the development and production of new biological products and biosorbents based on carbon-oxidizing microorganisms, testing the developed technologies for environmental risk management to eliminate the consequences of emergency petroleum product spills, creating an algorithm for conducting preliminary studies in vitro for their subsequent use in situ. A biological product and a biosorbent were developed to clean soils and water from hydrocarbon pollution were developed based on the developed consortiums of strains of carbon-oxidizing microorganisms. Biogeochemical technologies for producing and applying new biological products and biosorbents have been developed. The natural biogeochemical structure of the ecosystems is restored, and this is revealed by studying the species composition of the microbiocenosis or by analyzing the enzymatic activity of the microorganisms in soil or water. Finally, the effectiveness of the risk management method based on biogeochemical and, in particular, microbial engineering methods under conditions of oil pollution has been proven.","PeriodicalId":198785,"journal":{"name":"Advances in Environmental and Engineering Research","volume":"162 5-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental and Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21926/aeer.2204040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This research aims at one of the most important economic and environmental problems - the elimination of the consequences in case of emergency spills while cleaning petroleum products. The objectives of the study include the development and production of new biological products and biosorbents based on carbon-oxidizing microorganisms, testing the developed technologies for environmental risk management to eliminate the consequences of emergency petroleum product spills, creating an algorithm for conducting preliminary studies in vitro for their subsequent use in situ. A biological product and a biosorbent were developed to clean soils and water from hydrocarbon pollution were developed based on the developed consortiums of strains of carbon-oxidizing microorganisms. Biogeochemical technologies for producing and applying new biological products and biosorbents have been developed. The natural biogeochemical structure of the ecosystems is restored, and this is revealed by studying the species composition of the microbiocenosis or by analyzing the enzymatic activity of the microorganisms in soil or water. Finally, the effectiveness of the risk management method based on biogeochemical and, in particular, microbial engineering methods under conditions of oil pollution has been proven.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物地球化学工程:环境风险管理技术
这项研究旨在解决最重要的经济和环境问题之一-在清理石油产品时消除紧急泄漏的后果。该研究的目标包括开发和生产基于碳氧化微生物的新生物产品和生物吸附剂,测试已开发的环境风险管理技术,以消除石油产品紧急泄漏的后果,创建一种算法,用于在体外进行初步研究,以便随后在现场使用。基于已开发的碳氧化微生物菌群,开发了清洁土壤和水体的生物制品和生物吸附剂。生物地球化学技术在生产和应用新的生物制品和生物吸附剂方面得到了发展。生态系统的自然生物地球化学结构得到恢复,这可以通过研究微生物群落的物种组成或分析土壤或水中微生物的酶活性来揭示。最后,验证了基于生物地球化学,特别是微生物工程方法的石油污染风险管理方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cultural Eutrophication Impacts on New River in Northern Belize: A Community Capitals Assessment Phytoremediation: A Sustainable Approach to Combat Soil Salinity Human Health Impact of Municipal Solid Waste Mismanagement: A Review Application of Simulation-Based Metrics to Improve the Daylight Performance of a Secondary School, An Approach for Green Building Designers and Architects Estimating Inhaled Nitrogen Dioxide from the Human Biometric Response
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1