Maximum Power Point Tracking using Model Predictive Control of a flyback converter for photovoltaic applications

M. Shadmand, R. Balog, H. Abu rub
{"title":"Maximum Power Point Tracking using Model Predictive Control of a flyback converter for photovoltaic applications","authors":"M. Shadmand, R. Balog, H. Abu rub","doi":"10.1109/PECI.2014.6804540","DOIUrl":null,"url":null,"abstract":"Due to the variable, stochastic behavior of the solar energy resource, Maximum Power Point Tracking (MPPT) of photovoltaic (PV) is required to ensure continuous operation at the maximum power point to generate the most electrical energy. This paper presents a Model Predictive Control (MPC) MPPT technique. Extracting the maximum power from PV systems has been widely investigated within the literature; the main contribution of this paper is improvement of the Perturb and Observe (P&O) method through a fixed step predictive control under measured fast solar radiation variation. The proposed predictive control to achieve Maximum Power Point (MPP) speeds up the control loop since it predicts error before the switching signal is applied to the flyback DC/DC converter. Comparing the developed technique to the conventional P&O method indicates significant improvement in PV system performance. The proposed MPC-MPPT technique for a flyback converter is implemented using the dSpace CP 1103.","PeriodicalId":352005,"journal":{"name":"2014 Power and Energy Conference at Illinois (PECI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power and Energy Conference at Illinois (PECI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECI.2014.6804540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Due to the variable, stochastic behavior of the solar energy resource, Maximum Power Point Tracking (MPPT) of photovoltaic (PV) is required to ensure continuous operation at the maximum power point to generate the most electrical energy. This paper presents a Model Predictive Control (MPC) MPPT technique. Extracting the maximum power from PV systems has been widely investigated within the literature; the main contribution of this paper is improvement of the Perturb and Observe (P&O) method through a fixed step predictive control under measured fast solar radiation variation. The proposed predictive control to achieve Maximum Power Point (MPP) speeds up the control loop since it predicts error before the switching signal is applied to the flyback DC/DC converter. Comparing the developed technique to the conventional P&O method indicates significant improvement in PV system performance. The proposed MPC-MPPT technique for a flyback converter is implemented using the dSpace CP 1103.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模型预测控制的光伏反激变换器最大功率点跟踪
由于太阳能资源的可变、随机特性,要求光伏发电(PV)进行最大功率点跟踪(MPPT),以保证在最大功率点连续运行,产生最多的电能。提出了一种模型预测控制(MPC) MPPT技术。从光伏系统中提取最大功率已经在文献中得到了广泛的研究;本文的主要贡献在于对摄动与观测(P&O)方法进行改进,在测量到的太阳辐射快速变化情况下采用固定步长预测控制。由于预测控制在开关信号应用于反激式DC/DC变换器之前预测误差,从而加快了控制回路的速度,从而实现了最大功率点。将所开发的技术与传统的P&O方法进行比较,表明光伏系统性能有了显著提高。采用dSpace CP 1103实现了反激变换器的MPC-MPPT技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliable GPS-based timing for power systems: A multi-layered multi-receiver architecture Estimation of state variable statistics in the presence of intermittent energy resources Microgrid frequency regulation using wind turbine controls Improving performance of the non-iterative direct state estimation method Smart-grid-enabled distributed reactive power support with Conservation Voltage Reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1