The voice of silence: interpreting silence in truth discovery on social media

H. Cui, T. Abdelzaher
{"title":"The voice of silence: interpreting silence in truth discovery on social media","authors":"H. Cui, T. Abdelzaher","doi":"10.1145/3487351.3488360","DOIUrl":null,"url":null,"abstract":"This paper enhances the interpretation of silence for purposes of truth discovery on social media. Most solutions to fact-finding problems from social media data focus on what users explicitly post. Absence of a post, however, also plays a key role in interpreting veracity of information. In this paper, we focus on (absent links in) the retweet graph. A user might abstain from propagating content for many potential reasons. For example, they might not be aware of the original post; they might find the content uninteresting; or they might doubt content veracity and refrain from propagation (among other reasons). This paper formulates a joint fact-finding and silence interpretation problem, and shows that the joint formulation significantly improves our ability to distinguish true and false claims. An unsupervised algorithm, Joint Network Embedding and Maximum Likelihood (JNEML) framework, is developed to solve this problem. We show that the joint algorithm outperforms other unsupervised baselines significantly on truth discovery tasks on three empirical data sets collected using the Twitter API.","PeriodicalId":320904,"journal":{"name":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","volume":"354 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487351.3488360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper enhances the interpretation of silence for purposes of truth discovery on social media. Most solutions to fact-finding problems from social media data focus on what users explicitly post. Absence of a post, however, also plays a key role in interpreting veracity of information. In this paper, we focus on (absent links in) the retweet graph. A user might abstain from propagating content for many potential reasons. For example, they might not be aware of the original post; they might find the content uninteresting; or they might doubt content veracity and refrain from propagation (among other reasons). This paper formulates a joint fact-finding and silence interpretation problem, and shows that the joint formulation significantly improves our ability to distinguish true and false claims. An unsupervised algorithm, Joint Network Embedding and Maximum Likelihood (JNEML) framework, is developed to solve this problem. We show that the joint algorithm outperforms other unsupervised baselines significantly on truth discovery tasks on three empirical data sets collected using the Twitter API.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沉默之声:解读社交媒体真相发现中的沉默
本文以社交媒体上的真相发现为目的,加强对沉默的解读。从社交媒体数据中寻找事实问题的大多数解决方案都侧重于用户明确发布的内容。然而,没有帖子也在解释信息的真实性方面起着关键作用。在本文中,我们关注的是(缺少链接的)转发图。由于许多潜在的原因,用户可能不愿传播内容。例如,他们可能不知道原始帖子;他们可能会觉得内容无趣;或者他们可能会怀疑内容的真实性并避免传播(以及其他原因)。本文提出了一个共同的事实发现和沉默解释问题,并表明联合表述显著提高了我们区分真假主张的能力。为了解决这一问题,提出了一种无监督算法——联合网络嵌入和最大似然(JNEML)框架。我们表明,在使用Twitter API收集的三个经验数据集上,联合算法在真理发现任务上显著优于其他无监督基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting COVID-19 with AI techniques: current research and future directions Predictions of drug metabolism pathways through CYP 3A4 enzyme by analysing drug-target interactions network graph An insight into network structure measures and number of driver nodes Temporal dynamics of posts and user engagement of influencers on Facebook and Instagram Vibe check: social resonance learning for enhanced recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1