Controlling the properties of microstructured plastic optical fiber Bragg gratings using acousto-optic excitation

C. Marques, L. Bilro, L. Khan, R. A. Oliveira, D. Webb, R. Nogueira
{"title":"Controlling the properties of microstructured plastic optical fiber Bragg gratings using acousto-optic excitation","authors":"C. Marques, L. Bilro, L. Khan, R. A. Oliveira, D. Webb, R. Nogueira","doi":"10.1109/PGC.2012.6457930","DOIUrl":null,"url":null,"abstract":"A fine control of the mPOF Bragg grating spectrum properties, such as maximum reflected power and 3dB bandwidth, through acousto-optic modulation (AOM) using flexural regime is presented. A numerical comparison of the strain field along mPOFBG - AOM and the similar structure with SMFBG-AOM was presented, showing that the strain field amplitude is higher along the mPOFBG due to its smaller mechanical stiffness. The obtained results can be used in the development of fine-tuned optical filters using low voltage sources and low frequency regimes, to obtain tunable optical filters and to control the shape of the spectrum. Studies of the behavior in different gratings (such as phase shifted and long period gratings) for photonic applications, such as tunable notch filters or tunable cavities, are in progress. It can potentially be applied on tunable optical filters for POF transmission.","PeriodicalId":158783,"journal":{"name":"2012 Photonics Global Conference (PGC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Photonics Global Conference (PGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PGC.2012.6457930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A fine control of the mPOF Bragg grating spectrum properties, such as maximum reflected power and 3dB bandwidth, through acousto-optic modulation (AOM) using flexural regime is presented. A numerical comparison of the strain field along mPOFBG - AOM and the similar structure with SMFBG-AOM was presented, showing that the strain field amplitude is higher along the mPOFBG due to its smaller mechanical stiffness. The obtained results can be used in the development of fine-tuned optical filters using low voltage sources and low frequency regimes, to obtain tunable optical filters and to control the shape of the spectrum. Studies of the behavior in different gratings (such as phase shifted and long period gratings) for photonic applications, such as tunable notch filters or tunable cavities, are in progress. It can potentially be applied on tunable optical filters for POF transmission.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用声光激励控制微结构塑料光纤布拉格光栅的性能
本文提出了一种利用挠曲调制的声光调制(AOM)技术,对mPOF Bragg光栅的光谱特性,如最大反射功率和3dB带宽进行精细控制。对mPOFBG -AOM和类似结构的SMFBG-AOM的应变场进行了数值比较,结果表明,mPOFBG -AOM的机械刚度较小,应变场幅值更高。所得结果可用于开发使用低压源和低频的微调滤光片,以获得可调谐的滤光片和控制光谱的形状。在不同的光栅(如相移光栅和长周期光栅)中用于光子应用的行为研究,如可调陷波滤波器或可调腔,正在进行中。它可以潜在地应用于POF传输的可调谐滤光片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Erbium-doped transparent glass ceramic optical fibres: Characterization using mass spectroscopy and molecular dynamics modeling Photoacoustic phasoscopy for tissue characterization Impact of local storages on performance of PONs A novel multimode fiber for distributed temperature sensing based on anti-stokes Raman scattering The role of cold sonicated development scenarios for achieving ultradense and high aspect ratio for optical metamaterial applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1