Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation

H. Lam
{"title":"Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation","authors":"H. Lam","doi":"10.1109/WSC.2016.7822088","DOIUrl":null,"url":null,"abstract":"Input uncertainty refers to errors caused by a lack of complete knowledge about the probability distributions used to generate input variates in stochastic simulation. The quantification of input uncertainty is one of the central topics of interest and has been studied over the years among the simulation community. This tutorial overviews some methodological developments in two parts. The first part discusses major established statistical methods, while the second part discusses some recent results from a robust-optimization-based viewpoint and their comparisons to the established methods.","PeriodicalId":367269,"journal":{"name":"2016 Winter Simulation Conference (WSC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2016.7822088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Input uncertainty refers to errors caused by a lack of complete knowledge about the probability distributions used to generate input variates in stochastic simulation. The quantification of input uncertainty is one of the central topics of interest and has been studied over the years among the simulation community. This tutorial overviews some methodological developments in two parts. The first part discusses major established statistical methods, while the second part discusses some recent results from a robust-optimization-based viewpoint and their comparisons to the established methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高级教程:随机模拟中的输入不确定性和鲁棒分析
输入不确定性是指由于对随机模拟中用于生成输入变量的概率分布缺乏完全的了解而引起的错误。输入不确定性的量化是仿真界多年来研究的核心问题之一。本教程分两部分概述了一些方法的发展。第一部分讨论了主要的已建立的统计方法,而第二部分从基于鲁棒优化的角度讨论了一些最近的结果,并将它们与已建立的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Simheuristics with Petri net models: Potential applications to logistics and supply chain management A ship block logistics support system based on the shipyard simulation framework Modeling & simulation's role as a service to military and homeland security decision makers Multiple comparisons with a standard using false discovery rates Lean design and analysis of a milk-run delivery system: Case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1