Fixed Budget Performance of the (1+1) EA on Linear Functions

J. Lengler, N. Spooner
{"title":"Fixed Budget Performance of the (1+1) EA on Linear Functions","authors":"J. Lengler, N. Spooner","doi":"10.1145/2725494.2725506","DOIUrl":null,"url":null,"abstract":"We present a fixed budget analysis of the (1+1) evolutionary algorithm for general linear functions, considering both the quality of the solution after a predetermined 'budget' of fitness function evaluations (a priori) and the improvement in quality when the algorithm is given additional budget, given the quality of the current solution (a posteriori). Two methods are presented: one based on drift analysis, the other on the differential equation method and Chebyshev's inequality. While the first method is superior for general linear functions, the second can be more precise for specific functions and provides concentration guarantees. As an example, we provide tight a posteriori fixed budget results for the function OneMax.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We present a fixed budget analysis of the (1+1) evolutionary algorithm for general linear functions, considering both the quality of the solution after a predetermined 'budget' of fitness function evaluations (a priori) and the improvement in quality when the algorithm is given additional budget, given the quality of the current solution (a posteriori). Two methods are presented: one based on drift analysis, the other on the differential equation method and Chebyshev's inequality. While the first method is superior for general linear functions, the second can be more precise for specific functions and provides concentration guarantees. As an example, we provide tight a posteriori fixed budget results for the function OneMax.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性函数上(1+1)EA的固定预算性能
我们提出了一般线性函数的(1+1)进化算法的固定预算分析,考虑了适应度函数评估(先验)的预定“预算”后的解的质量,以及在给定当前解的质量(后验)的情况下,算法被给予额外预算时的质量改进。提出了两种方法:一种是基于漂移分析,另一种是基于微分方程法和切比雪夫不等式。虽然第一种方法对一般线性函数更优,但第二种方法对特定函数更精确,并提供集中保证。作为一个例子,我们为OneMax函数提供了严格的后验固定预算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights From Adversarial Fitness Functions Hypomixability Elimination In Evolutionary Systems Black-box Complexity of Parallel Search with Distributed Populations Information Geometry of the Gaussian Distribution in View of Stochastic Optimization Fixed Budget Performance of the (1+1) EA on Linear Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1