HDR IMAGE QUALITY ASSESSMENT USING MACHINE-LEARNING BASED COMBINATION OF QUALITY METRICS

A. Choudhury, S. Daly
{"title":"HDR IMAGE QUALITY ASSESSMENT USING MACHINE-LEARNING BASED COMBINATION OF QUALITY METRICS","authors":"A. Choudhury, S. Daly","doi":"10.1109/GlobalSIP.2018.8646579","DOIUrl":null,"url":null,"abstract":"We present a Full-Reference Image Quality Assessment (FR-IQA) approach to improve High Dynamic Range (HDR) IQA by combining results from various quality metrics (HDR-CQM). To combine these results, we apply linear regression and various machine learning techniques such as multilayer perceptron, random forest, random trees, radial basis function network and support vector machine (SVM) regression. We found that using a non-linear combination of scores from different quality metrics using SVM is better at prediction than the other techniques. We use the Sequential Forward Floating Selection technique to select a subset of metrics from a list of quality metrics to improve performance and reduce complexity. We demonstrate improved performance using HDR-CQM as compared to a number of existing IQA metrics. We find that our HDR-CQM metric comprised of only four metrics can obtain statistically significant improvement over HDR video quality measure (HDR-VQM), the best performing individual IQA metric for HDR still images.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a Full-Reference Image Quality Assessment (FR-IQA) approach to improve High Dynamic Range (HDR) IQA by combining results from various quality metrics (HDR-CQM). To combine these results, we apply linear regression and various machine learning techniques such as multilayer perceptron, random forest, random trees, radial basis function network and support vector machine (SVM) regression. We found that using a non-linear combination of scores from different quality metrics using SVM is better at prediction than the other techniques. We use the Sequential Forward Floating Selection technique to select a subset of metrics from a list of quality metrics to improve performance and reduce complexity. We demonstrate improved performance using HDR-CQM as compared to a number of existing IQA metrics. We find that our HDR-CQM metric comprised of only four metrics can obtain statistically significant improvement over HDR video quality measure (HDR-VQM), the best performing individual IQA metric for HDR still images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于机器学习的质量指标组合的HDR图像质量评估
我们提出了一种全参考图像质量评估(FR-IQA)方法,通过结合各种质量指标(HDR- cqm)的结果来改进高动态范围(HDR) IQA。为了结合这些结果,我们应用了线性回归和各种机器学习技术,如多层感知器、随机森林、随机树、径向基函数网络和支持向量机(SVM)回归。我们发现,使用支持向量机的不同质量指标的分数的非线性组合在预测方面比其他技术更好。我们使用顺序前向浮动选择技术从质量度量列表中选择度量的子集,以提高性能并降低复杂性。与许多现有的IQA指标相比,我们演示了使用HDR-CQM改进的性能。我们发现我们的HDR- cqm指标仅由四个指标组成,可以比HDR视频质量度量(HDR- vqm)获得统计上显著的改进,HDR- vqm是HDR静态图像中表现最好的单个IQA指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1