Vehicle type classification from visual-based dimension estimation

A. Lai, Gsk Fung, N. Yung
{"title":"Vehicle type classification from visual-based dimension estimation","authors":"A. Lai, Gsk Fung, N. Yung","doi":"10.1109/ITSC.2001.948656","DOIUrl":null,"url":null,"abstract":"This paper presents a visual-based dimension estimation method for vehicle type classification. Our method extracts moving vehicles from traffic image sequences and fits them with a simple deformable vehicle model. Using a set of coordination mapping functions derived from a calibrated camera model and relying on a shadow removal method, vehicle's width, length and height are estimated. Our experimental tests show that the modeling method is effective and the estimation accuracy is sufficient for general vehicle type classification.","PeriodicalId":173372,"journal":{"name":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITSC 2001. 2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.01TH8585)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2001.948656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142

Abstract

This paper presents a visual-based dimension estimation method for vehicle type classification. Our method extracts moving vehicles from traffic image sequences and fits them with a simple deformable vehicle model. Using a set of coordination mapping functions derived from a calibrated camera model and relying on a shadow removal method, vehicle's width, length and height are estimated. Our experimental tests show that the modeling method is effective and the estimation accuracy is sufficient for general vehicle type classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉尺寸估计的车辆类型分类
提出了一种基于视觉的车型分类维数估计方法。该方法从交通图像序列中提取运动车辆,并用简单的可变形车辆模型拟合。利用标定后的相机模型导出的一组协调映射函数,依靠阴影去除方法,估计出车辆的宽度、长度和高度。实验结果表明,该建模方法是有效的,估计精度足以用于一般车型分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lessons learned in interfacing dynamic message signs with a trunked radio system Three approaches to the dynamic network loading problem The CarLink II pilot program: testing a commuter-based carsharing model Recent trends in automatic train controls Conflict detection and planar resolution for air traffic control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1