Optimization of Process Parameters for Cholesterol Oxidase Production by Streptomyces Olivaceus MTCC 6820

S. Sahu, S. Shera, R. Banik
{"title":"Optimization of Process Parameters for Cholesterol Oxidase Production by Streptomyces Olivaceus MTCC 6820","authors":"S. Sahu, S. Shera, R. Banik","doi":"10.2174/1874070701913010047","DOIUrl":null,"url":null,"abstract":"Streptomyces olivaceusMTCC 6820 is a potent microorganism for cholesterol oxidase (ChOx) production through the submerged fermentation process. Statistical optimization of the process parameters for submerged fermentation enhances the production of enzymes.This work is aimed to optimize the culture conditions for the fermentative production of cholesterol oxidase byStreptomyces olivaceusMTCC 6820 using combined Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques.The ChOx production (U/ml) was modeled and optimized as a function of six independent variables (culture conditions) using RSM and ANN.ChOx production enhanced 2.2 fold,i.e1.9 ± 0.21 U/ml under unoptimized conditions to 4.2 ± 0.51 U/ml after the optimization of culture conditions. Higher coefficient of determination (R2= 97.09 %) for RSM and lower values of MSE (0.039) and MAPE (3.46 %) for ANN proved the adequacy of both the models. The optimized culture conditions predicted by RSMvs. ANN were pH (7.5), inoculum age (48 h), inoculum size (11.25 % v/v), fermentation period (72 h), incubation temperature (30°C) and shaking speed (175 rpm).The modeling, optimization and prediction abilities of both RSM and ANN methodologies were compared. The values of Pearson correlation coefficient (r) (ANN0.98> RSM0.95), regression coefficient (R2) between experimental activity, RSM and ANN predicted ChOx activity, respectively (ANN0.96> RSM0.90) and Absolute Average Deviation (AAD) for (ANN3.46%< RSM9.87%) substantiated better prediction ability of ANN than RSM. These statistical values indicated the superiority of ANN in capturing the non-linear behavior of the system.","PeriodicalId":296126,"journal":{"name":"The Open Biotechnology Journal","volume":"34 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Biotechnology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874070701913010047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Streptomyces olivaceusMTCC 6820 is a potent microorganism for cholesterol oxidase (ChOx) production through the submerged fermentation process. Statistical optimization of the process parameters for submerged fermentation enhances the production of enzymes.This work is aimed to optimize the culture conditions for the fermentative production of cholesterol oxidase byStreptomyces olivaceusMTCC 6820 using combined Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques.The ChOx production (U/ml) was modeled and optimized as a function of six independent variables (culture conditions) using RSM and ANN.ChOx production enhanced 2.2 fold,i.e1.9 ± 0.21 U/ml under unoptimized conditions to 4.2 ± 0.51 U/ml after the optimization of culture conditions. Higher coefficient of determination (R2= 97.09 %) for RSM and lower values of MSE (0.039) and MAPE (3.46 %) for ANN proved the adequacy of both the models. The optimized culture conditions predicted by RSMvs. ANN were pH (7.5), inoculum age (48 h), inoculum size (11.25 % v/v), fermentation period (72 h), incubation temperature (30°C) and shaking speed (175 rpm).The modeling, optimization and prediction abilities of both RSM and ANN methodologies were compared. The values of Pearson correlation coefficient (r) (ANN0.98> RSM0.95), regression coefficient (R2) between experimental activity, RSM and ANN predicted ChOx activity, respectively (ANN0.96> RSM0.90) and Absolute Average Deviation (AAD) for (ANN3.46%< RSM9.87%) substantiated better prediction ability of ANN than RSM. These statistical values indicated the superiority of ANN in capturing the non-linear behavior of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
橄榄链霉菌MTCC 6820产胆固醇氧化酶工艺参数优化
橄榄链霉菌(Streptomyces olivaceusMTCC 6820)是一种通过深层发酵生产胆固醇氧化酶(ChOx)的有效微生物。对深层发酵工艺参数进行统计优化,提高了酶的产量。利用响应面法(RSM)和人工神经网络(ANN)技术对橄榄链霉菌mtcc 6820发酵产胆固醇氧化酶的培养条件进行了优化。利用RSM和ANN对ChOx产量(U/ml)进行建模和优化,并将其作为六个自变量(培养条件)的函数。优化培养条件后,ChOx产量提高了2.2倍,即从未优化条件下的1.9±0.21 U/ml提高到4.2±0.51 U/ml。RSM的决定系数较高(R2= 97.09%),而ANN的MSE和MAPE的决定系数较低(分别为0.039和3.46%),证明了两种模型的充分性。RSMvs预测的最佳培养条件。ANN分别为pH(7.5)、接种年龄(48 h)、接种量(11.25% v/v)、发酵时间(72 h)、培养温度(30℃)和摇速(175 rpm)。比较了RSM和ANN方法的建模、优化和预测能力。Pearson相关系数(r) (ANN0.98> RSM0.95)、回归系数(R2) (ANN0.96> RSM0.90)和绝对平均偏差(AAD) (ANN3.46%< RSM9.87%)均证实了人工神经网络对ChOx活性的预测能力优于RSM。这些统计值表明了人工神经网络在捕捉系统非线性行为方面的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Terminalia Arjuna (Roxb.) Wight & amp; Arn: Unveiling its Potential as a Mosquito Control Agent through Biosynthesized Nanomaterials and Computational Analysis against Aedes Aegypti and Aedes Albopictus Navigating the Nanoscale: Unraveling the Complexities of Metallic Nanoparticle Biosynthesis for Biomedical Breakthroughs and Addressing Toxicity Concerns Isolation and Characterization of Polyethylene and Polyethylene Terephthalate-degrading Bacteria from Jakarta Bay, Indonesia Isolation and Characterization of Polyethylene and Polyethylene Terephthalate-degrading Bacteria from Jakarta Bay, Indonesia Rapid In Vitro Regeneration and Genetic Fidelity Assessment of Regenerated Plants in Ayapana Triplinervis (Vahl) R.M. King & H. Robinson: An Ethnomedicinal and Ornamental Herb
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1