Hyperbolic Functions Impact Evaluation on Channel Identification Based on Recursive Kernel Algorithm

Rachid Fateh, A. Darif, S. Safi
{"title":"Hyperbolic Functions Impact Evaluation on Channel Identification Based on Recursive Kernel Algorithm","authors":"Rachid Fateh, A. Darif, S. Safi","doi":"10.1109/ICOA55659.2022.9934118","DOIUrl":null,"url":null,"abstract":"Over the last years, the subject of non-linear system identification has attracted considerable interest due to the numerous applications that could be used and the broad multidisciplinary scope of the field. In this paper, we exploit a non-linear system with a linear finite impulse response (FIR) sub-element under the existence of Gaussian noise, while using an algorithm based on positive defined kernels to identify the channel model parameters. Firstly, we have used an algorithm based on the theory of positive definite kernels to estimate the parameters of the selective channel. Secondly, we have studied the influence of the nonlinearity function of modeled single-input single-output (SISO) communication systems with binary-valued output observations on the identification performance of the channel impulse responses. To show which nonlinear function can achieve the most efficient result for channel parameter identification, some examples of simulation results are provided in this works.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Over the last years, the subject of non-linear system identification has attracted considerable interest due to the numerous applications that could be used and the broad multidisciplinary scope of the field. In this paper, we exploit a non-linear system with a linear finite impulse response (FIR) sub-element under the existence of Gaussian noise, while using an algorithm based on positive defined kernels to identify the channel model parameters. Firstly, we have used an algorithm based on the theory of positive definite kernels to estimate the parameters of the selective channel. Secondly, we have studied the influence of the nonlinearity function of modeled single-input single-output (SISO) communication systems with binary-valued output observations on the identification performance of the channel impulse responses. To show which nonlinear function can achieve the most efficient result for channel parameter identification, some examples of simulation results are provided in this works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于递归核算法的双曲函数对信道识别的影响评估
在过去的几年里,非线性系统识别的主题已经引起了相当大的兴趣,因为可以使用的众多应用和广泛的多学科范围的领域。本文利用高斯噪声存在下具有线性有限脉冲响应(FIR)子单元的非线性系统,采用一种基于正定义核的算法来识别信道模型参数。首先,我们使用基于正定核理论的算法来估计选择信道的参数。其次,研究了具有二值输出观测值的模拟单输入单输出(SISO)通信系统的非线性函数对信道脉冲响应识别性能的影响。为了说明哪种非线性函数在信道参数识别中最有效,本文给出了一些仿真结果的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1