{"title":"Nonlinear buckling analysis of higher-order shear deformable FG-CNTRC plates stiffened by oblique FG-CNTRC stiffeners","authors":"Tran Quang Minh, V. M. Duc, D. Dong, V. H. Nam","doi":"10.15625/0866-7136/17933","DOIUrl":null,"url":null,"abstract":"The nonlinear buckling analysis of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates subjected to axial compression load is analytically examined in this paper. Assuming that the FG-CNTRC plates are stiffened by an oblique FG-CNTRC stiffener system. Reddy’s higher-order shear deformation plate theory (HSDPT) with the geometrical nonlinearities of von Kármán is applied to establish the basic formulations. Moreover, the smeared stiffener technique is successfully improved for the higher-order shear deformable anisotropic oblique stiffener system by using a homogeneous model of the anisotropic beam. Galerkin’s method is used to achieve the expressions of critical buckling loads and postbuckling load-deflection curves in explicit form. The numerical values display the influences of FG-CNTRC stiffeners, material, and geometrical properties on the nonlinear buckling response of plates.","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/17933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The nonlinear buckling analysis of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates subjected to axial compression load is analytically examined in this paper. Assuming that the FG-CNTRC plates are stiffened by an oblique FG-CNTRC stiffener system. Reddy’s higher-order shear deformation plate theory (HSDPT) with the geometrical nonlinearities of von Kármán is applied to establish the basic formulations. Moreover, the smeared stiffener technique is successfully improved for the higher-order shear deformable anisotropic oblique stiffener system by using a homogeneous model of the anisotropic beam. Galerkin’s method is used to achieve the expressions of critical buckling loads and postbuckling load-deflection curves in explicit form. The numerical values display the influences of FG-CNTRC stiffeners, material, and geometrical properties on the nonlinear buckling response of plates.