Building Top-k Consistent Results for Web Table Augmentation

Fei Qi, Xiaoyu Wu, Ning Wang
{"title":"Building Top-k Consistent Results for Web Table Augmentation","authors":"Fei Qi, Xiaoyu Wu, Ning Wang","doi":"10.1109/WISA.2017.30","DOIUrl":null,"url":null,"abstract":"Web table augmentation enables users to augment attributes based on key column and other known information. For table augmentation, most of systems return a single result which could not meet the users' needs of selection and validation. Furthermore, previous works only consider the entity-attribute binary tables with the first column corresponding to the entity name and the second to an attribute to be extended. When a table has multiple columns to be extended, the result table consolidated by binary tables will suffer from entity inconsistency. In this paper, we present a framework called TAT to build Top-k consistent results for web table augmentation. While ensuring the consistency of entities, TAT provides as diverse results as possible. We design two algorithms, exclusive and iterative algorithm, for web table augmentation that return Top-k results based on different requirements from users. The experiments show that TAT could return Top-k consistent results without loss of precision or coverage.","PeriodicalId":204706,"journal":{"name":"2017 14th Web Information Systems and Applications Conference (WISA)","volume":"2016 27","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th Web Information Systems and Applications Conference (WISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2017.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Web table augmentation enables users to augment attributes based on key column and other known information. For table augmentation, most of systems return a single result which could not meet the users' needs of selection and validation. Furthermore, previous works only consider the entity-attribute binary tables with the first column corresponding to the entity name and the second to an attribute to be extended. When a table has multiple columns to be extended, the result table consolidated by binary tables will suffer from entity inconsistency. In this paper, we present a framework called TAT to build Top-k consistent results for web table augmentation. While ensuring the consistency of entities, TAT provides as diverse results as possible. We design two algorithms, exclusive and iterative algorithm, for web table augmentation that return Top-k results based on different requirements from users. The experiments show that TAT could return Top-k consistent results without loss of precision or coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为Web表增强构建Top-k一致的结果
Web表增强使用户能够根据键列和其他已知信息增强属性。对于表扩展,大多数系统返回一个单一的结果,不能满足用户选择和验证的需要。此外,以前的工作只考虑实体-属性二进制表,其中第一列对应实体名称,第二列对应要扩展的属性。当一个表有多个列要扩展时,由二进制表合并的结果表将遭受实体不一致的问题。在本文中,我们提出了一个名为TAT的框架,用于构建web表增强的Top-k一致结果。在确保实体一致性的同时,TAT提供尽可能多样化的结果。我们设计了排他算法和迭代算法两种web表增强算法,根据用户的不同需求返回Top-k结果。实验表明,TAT可以在不损失精度和覆盖范围的情况下返回Top-k一致的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Time Series Classification via Sparse Linear Combination Checking the Statutes in Chinese Judgment Document Based on Editing Distance Algorithm Information Extraction from Chinese Judgment Documents Topic Classification Based on Improved Word Embedding Keyword Extraction for Social Media Short Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1