Power Estimation of Synchronous Sequential VLSI Circuits Using Boosting Techniques

Givari Santhosh, A. S. Raghuvanshi
{"title":"Power Estimation of Synchronous Sequential VLSI Circuits Using Boosting Techniques","authors":"Givari Santhosh, A. S. Raghuvanshi","doi":"10.1109/PCEMS58491.2023.10136099","DOIUrl":null,"url":null,"abstract":"Power has a notable influence on the functionality and reliability of the Very Large-Scale Integration (VLSI) circuits. Thus, estimation of consumed power at an initial phase is extremely necessary. This paper describes the comparative study of supervised ensemble based boosting machine learning techniques to predict synchronous sequential VLSI circuits. We implemented three supervised ensemble based boosting learning algorithms for power estimation: Adaptive Boosting (AdaBoost), Gradient Boosting (GB) and Extreme Gradient Boosting (XgBoost). Ensemble boosting techniques are tuned by using Grid Search and Random Search hyper-parameter optimization techniques. The ensemble based boosting techniques are applied on IEEE ISCAS’89 benchmark circuits. The coefficient of determination (R) and Root Mean Squared Error (RMSE) are the statistical parameters. These statistical parameters are calculated for each boosting algorithm. The experimental results show that gradient boosting with grid search hyper-parameter optimization approach is a strong preference for predicting the power of synchronous sequential VLSI circuits. Since it has remarkable coefficient of determination of 0.99746 and lower RMSE of 3.143e-5.","PeriodicalId":330870,"journal":{"name":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 2nd International Conference on Paradigm Shifts in Communications Embedded Systems, Machine Learning and Signal Processing (PCEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCEMS58491.2023.10136099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Power has a notable influence on the functionality and reliability of the Very Large-Scale Integration (VLSI) circuits. Thus, estimation of consumed power at an initial phase is extremely necessary. This paper describes the comparative study of supervised ensemble based boosting machine learning techniques to predict synchronous sequential VLSI circuits. We implemented three supervised ensemble based boosting learning algorithms for power estimation: Adaptive Boosting (AdaBoost), Gradient Boosting (GB) and Extreme Gradient Boosting (XgBoost). Ensemble boosting techniques are tuned by using Grid Search and Random Search hyper-parameter optimization techniques. The ensemble based boosting techniques are applied on IEEE ISCAS’89 benchmark circuits. The coefficient of determination (R) and Root Mean Squared Error (RMSE) are the statistical parameters. These statistical parameters are calculated for each boosting algorithm. The experimental results show that gradient boosting with grid search hyper-parameter optimization approach is a strong preference for predicting the power of synchronous sequential VLSI circuits. Since it has remarkable coefficient of determination of 0.99746 and lower RMSE of 3.143e-5.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于升压技术的同步顺序VLSI电路功率估计
功率对超大规模集成电路(VLSI)的功能和可靠性有显著影响。因此,在初始阶段估计消耗的功率是非常必要的。本文描述了基于监督集成的增强机器学习技术预测同步顺序VLSI电路的比较研究。我们实现了三种基于监督集成的增强学习算法用于功率估计:自适应增强(AdaBoost),梯度增强(GB)和极端梯度增强(XgBoost)。采用网格搜索和随机搜索超参数优化技术对集成提升技术进行了优化。基于集成的升压技术在IEEE ISCAS’89基准电路中得到了应用。决定系数(R)和均方根误差(RMSE)为统计参数。这些统计参数是为每个提升算法计算的。实验结果表明,梯度增强与网格搜索超参数优化方法在预测同步顺序VLSI电路的功率方面具有很强的优势。因为它具有显著的决定系数0.99746和较低的RMSE 3.143e-5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive Zira Voice Assistant- A Personalized Desktop Application Gait-Face Based Human Recognition From Distant Video Survey on Diverse Image Inpainting using Diffusion Models Survey, Analysis and Association Rules derivation using Apriori Method for buying preference amongst kids of age-group 5 to 9 in India Implementing Chaos Based Optimisations on Neural Networks for Predictions of Distributed Denial-of-Service (DDoS) Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1