Video Surveillance System Based on 3D Action Recognition

Sungjoo Park, Dongchil Kim
{"title":"Video Surveillance System Based on 3D Action Recognition","authors":"Sungjoo Park, Dongchil Kim","doi":"10.1109/ICUFN.2018.8436644","DOIUrl":null,"url":null,"abstract":"Human action recognition using depth-map images from 3D camera for surveillance system is a promising alternative to the conventional 2D video based surveillance. We propose a security-event detection method based on body part classification and human action recognition for more effective video surveillance system. Experimental results show that the body part classification accuracy of 65.0% and security event detection accuracy of 0.878 were achieved for 9 security events.","PeriodicalId":224367,"journal":{"name":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","volume":"48 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUFN.2018.8436644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Human action recognition using depth-map images from 3D camera for surveillance system is a promising alternative to the conventional 2D video based surveillance. We propose a security-event detection method based on body part classification and human action recognition for more effective video surveillance system. Experimental results show that the body part classification accuracy of 65.0% and security event detection accuracy of 0.878 were achieved for 9 security events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于三维动作识别的视频监控系统
利用三维摄像机的深度图图像进行人体动作识别是传统的基于二维视频的监控的一种很有前途的替代方案。为了提高视频监控系统的检测效率,提出了一种基于人体部位分类和人体动作识别的安全事件检测方法。实验结果表明,该方法对9个安全事件的身体部位分类准确率为65.0%,安全事件检测准确率为0.878。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Low Overhead Feedback Scheme of Channel Covariance Matrix for Massive MIMO Systems Development of a Hybrid Decision-Making Method Based on a Simulation-Genetic Algorithm in a Web-Oriented Metallurgical Enterprise Information System Indoor Semantic Segmentation for Robot Navigating on Mobile Small Drone Development for Public Service Relating to Korean PPI Impact of Both Nonzero Boresight and Jitter Pointing Error on Outage Capacity of FSO Communication Systems Over Strong Turbulence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1