Channel Estimation Algorithm of OFDM-RoF System in 5G Mobile Front-end Network Based on Artificial Neural Network

Yun Zhang, Siyuan Liang, Chunting Wang, Feng Zhao
{"title":"Channel Estimation Algorithm of OFDM-RoF System in 5G Mobile Front-end Network Based on Artificial Neural Network","authors":"Yun Zhang, Siyuan Liang, Chunting Wang, Feng Zhao","doi":"10.1145/3573942.3574000","DOIUrl":null,"url":null,"abstract":"In the environment of the 5G era, with the advancement of communication technology and the continuous improvement of people's living and work needs, users' demand for network access bandwidth is increasing. Orthogonal Frequency Division Multiplexing-Radio Frequency over Optical (OFDM-RoF) system is an Internet solution with high spectrum utilization, large bandwidth and fast transmission data rate. The chromatic dispersion (CD) and polarization mode dispersion (PMD) existing in the system will affect the transmission performance of the OFDM-RoF system. In this paper, the artificial neural network algorithm is applied to the field of channel estimation. Reduce the effect of dispersion on the system by estimating the activation function of the channel. Simulation results show that compared with the frequency domain least squares (FDLS) method, this algorithm can improve the system performance and improve the bit error rate optimization ability by an order of magnitude.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3574000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the environment of the 5G era, with the advancement of communication technology and the continuous improvement of people's living and work needs, users' demand for network access bandwidth is increasing. Orthogonal Frequency Division Multiplexing-Radio Frequency over Optical (OFDM-RoF) system is an Internet solution with high spectrum utilization, large bandwidth and fast transmission data rate. The chromatic dispersion (CD) and polarization mode dispersion (PMD) existing in the system will affect the transmission performance of the OFDM-RoF system. In this paper, the artificial neural network algorithm is applied to the field of channel estimation. Reduce the effect of dispersion on the system by estimating the activation function of the channel. Simulation results show that compared with the frequency domain least squares (FDLS) method, this algorithm can improve the system performance and improve the bit error rate optimization ability by an order of magnitude.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的5G移动前端网络OFDM-RoF系统信道估计算法
在5G时代的环境下,随着通信技术的进步和人们生活工作需求的不断提高,用户对网络接入带宽的需求越来越大。正交频分复用-射频over光(OFDM-RoF)系统是一种频谱利用率高、带宽大、传输速率快的互联网解决方案。系统中存在的色散(CD)和偏振模色散(PMD)会影响OFDM-RoF系统的传输性能。本文将人工神经网络算法应用于信道估计领域。通过估计通道的激活函数来减少色散对系统的影响。仿真结果表明,与频域最小二乘(FDLS)方法相比,该算法可以提高系统性能,并将误码率优化能力提高一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model Lightweight Method for Object Detection Incremental Encoding Transformer Incorporating Common-sense Awareness for Conversational Sentiment Recognition Non-intrusive Automatic 3D Gaze Ground-truth System Fiber Optic Gyroscope Random Error Modeling Based on Improved Kalman Filtering Channel Modeling of Spaceborne Multiwavelet Packet OFDM System Based on CWGAN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1