{"title":"Riker","authors":"Jie Zhao, Ziyu Guan, Huan Sun","doi":"10.1145/3292500.3330985","DOIUrl":null,"url":null,"abstract":"This work studies product question answering (PQA) which aims to answer product-related questions based on customer reviews. Most recent PQA approaches adopt end2end semantic matching methodologies, which map questions and answers to a latent vector space to measure their relevance. Such methods often achieve superior performance but it tends to be difficult to interpret why. On the other hand, simple keyword-based search methods exhibit natural interpretability through matched keywords, but often suffer from the lexical gap problem. In this work, we develop a new PQA framework (named Riker) that enjoys the benefits of both interpretability and effectiveness. Riker mines rich keyword representations of a question with two major components, internal word re-weighting and external word association, which predict the importance of each question word and associate the question with outside relevant keywords respectively, and can be jointly trained under weak supervision with large-scale QA pairs. The keyword representations from Riker can be directly used as input to a keyword-based search module, enabling the whole process to be effective while preserving good interpretability. We conduct extensive experiments using Amazon QA and review datasets from 5 different departments, and our results show that Riker substantially outperforms previous state-of-the-art methods in both synthetic settings and real user evaluations. In addition, we compare keyword representations from Riker and those from attention mechanisms popularly used for deep neural networks through case studies, showing that the former are more effective and interpretable.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"3 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work studies product question answering (PQA) which aims to answer product-related questions based on customer reviews. Most recent PQA approaches adopt end2end semantic matching methodologies, which map questions and answers to a latent vector space to measure their relevance. Such methods often achieve superior performance but it tends to be difficult to interpret why. On the other hand, simple keyword-based search methods exhibit natural interpretability through matched keywords, but often suffer from the lexical gap problem. In this work, we develop a new PQA framework (named Riker) that enjoys the benefits of both interpretability and effectiveness. Riker mines rich keyword representations of a question with two major components, internal word re-weighting and external word association, which predict the importance of each question word and associate the question with outside relevant keywords respectively, and can be jointly trained under weak supervision with large-scale QA pairs. The keyword representations from Riker can be directly used as input to a keyword-based search module, enabling the whole process to be effective while preserving good interpretability. We conduct extensive experiments using Amazon QA and review datasets from 5 different departments, and our results show that Riker substantially outperforms previous state-of-the-art methods in both synthetic settings and real user evaluations. In addition, we compare keyword representations from Riker and those from attention mechanisms popularly used for deep neural networks through case studies, showing that the former are more effective and interpretable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
瑞克
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tackle Balancing Constraint for Incremental Semi-Supervised Support Vector Learning HATS Temporal Probabilistic Profiles for Sepsis Prediction in the ICU Large-scale User Visits Understanding and Forecasting with Deep Spatial-Temporal Tensor Factorization Framework Adaptive Influence Maximization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1