Claudio A. Parra, Travis Yu, Kyu Seon Yum, Arturo Garza, I. Scherson
{"title":"Recursive MaxSquare: Cache-friendly, Parallel, Scalable in situ Rectangular Matrix Transposition","authors":"Claudio A. Parra, Travis Yu, Kyu Seon Yum, Arturo Garza, I. Scherson","doi":"10.1109/CSCI51800.2020.00228","DOIUrl":null,"url":null,"abstract":"An in situ rectangular matrix transposition algorithm is presented based on recursively partitioning an original rectangular matrix into a maximum size square matrix and a remaining rectangular sub-matrix. To transpose the maximum size square sub-matrix, a novel cache-friendly, parallel (multithreaded) and scalable in-place square matrix transposition procedure is proposed: it requires a total of Θ(n2/2) simple memory swaps, a single element temporary storage per thread, and does not make use of complex index arithmetic in the main transposition loop. Recursion is used to transpose the remaining rectangular sub-matrix. Dubbed Recursive MaxSquare, the novel proposed rectangular matrix in-place transposition algorithm uses a generalization of the perfect shuffle/unshuffle data permutation to stitch together the recursively transposed square matrices. The shuffle/unshuffle permutations are shown to be efficiently decomposed using basic vector/segment swaps, exchanges and/or cyclic shifts (rotations). A balanced parallel cycles-based transposition is also proposed for comparison.","PeriodicalId":336929,"journal":{"name":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"18 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI51800.2020.00228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An in situ rectangular matrix transposition algorithm is presented based on recursively partitioning an original rectangular matrix into a maximum size square matrix and a remaining rectangular sub-matrix. To transpose the maximum size square sub-matrix, a novel cache-friendly, parallel (multithreaded) and scalable in-place square matrix transposition procedure is proposed: it requires a total of Θ(n2/2) simple memory swaps, a single element temporary storage per thread, and does not make use of complex index arithmetic in the main transposition loop. Recursion is used to transpose the remaining rectangular sub-matrix. Dubbed Recursive MaxSquare, the novel proposed rectangular matrix in-place transposition algorithm uses a generalization of the perfect shuffle/unshuffle data permutation to stitch together the recursively transposed square matrices. The shuffle/unshuffle permutations are shown to be efficiently decomposed using basic vector/segment swaps, exchanges and/or cyclic shifts (rotations). A balanced parallel cycles-based transposition is also proposed for comparison.