Empirical likelihood ratio test with density function constraints

Yingxi Liu, A. Tewfik
{"title":"Empirical likelihood ratio test with density function constraints","authors":"Yingxi Liu, A. Tewfik","doi":"10.1109/ICASSP.2013.6638886","DOIUrl":null,"url":null,"abstract":"In this work, we study non-parametric hypothesis testing problem with density function constraints. The empirical likelihood ratio test has been widely used in testing problems with moment (in)equality constraints. However, some detection problems cannot be described using moment (in)equalities. We propose a density function constraint along with an empirical likelihood ratio test. This detector is applicable to a wide variety of robust parametric/non-parametric detection problems. Since the density function constraints provide a more exact description of the null hypothesis, the test outperforms many other alternatives such as the empirical likelihood ratio test with moment constraints and robust Kolmogorov-Smirnov test, especially when the alternative hypothesis has a special structure.","PeriodicalId":183968,"journal":{"name":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"26 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2013.6638886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study non-parametric hypothesis testing problem with density function constraints. The empirical likelihood ratio test has been widely used in testing problems with moment (in)equality constraints. However, some detection problems cannot be described using moment (in)equalities. We propose a density function constraint along with an empirical likelihood ratio test. This detector is applicable to a wide variety of robust parametric/non-parametric detection problems. Since the density function constraints provide a more exact description of the null hypothesis, the test outperforms many other alternatives such as the empirical likelihood ratio test with moment constraints and robust Kolmogorov-Smirnov test, especially when the alternative hypothesis has a special structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有密度函数约束的经验似然比检验
本文研究了具有密度函数约束的非参数假设检验问题。经验似然比检验被广泛应用于矩等式约束问题的检验。然而,有些检测问题不能用矩等式来描述。我们提出了密度函数约束以及经验似然比检验。该检测器适用于各种鲁棒参数/非参数检测问题。由于密度函数约束提供了对零假设更精确的描述,因此该检验优于许多其他替代方法,例如具有矩约束的经验似然比检验和鲁棒Kolmogorov-Smirnov检验,特别是当替代假设具有特殊结构时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A waveform covariancematrix for high SINR and lowside-lobe levels Wavelength-adaptive image formation model and geometric classification for defogging unmanned aerial vehicle images 2D orthogonal symmetricwavelet filters using allpass filters Joint recovery of sparse signals and parameter perturbations with parameterized measurement models Empirical likelihood ratio test with density function constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1