Optimizing Database Query Performance Using Table Partitioning Techniques

K. Maabreh
{"title":"Optimizing Database Query Performance Using Table Partitioning Techniques","authors":"K. Maabreh","doi":"10.1109/ACIT.2018.8672584","DOIUrl":null,"url":null,"abstract":"Database performance is a primary branch of information technology which deals with the proper management of the database. The primary goal of the data management is to provide the organizations daily routines with powerful applications that have to be run efficiently. Performance optimization has a critical role in improving the database usage. In particular, managing the massive amount of data generated daily by various users. The main target of this research is to evaluate the data partitioning technique in enhancing the performance of quires submitted to large databases. The encouraging results show that data partitioning could improve the performance of DBMS which manages massive databases. The experiments reveal that data partitioning has a remarkable impact on the query execution time in big databases, which exceeds 35% compared to small database size or not partitioned database.","PeriodicalId":138075,"journal":{"name":"Automation, Control, and Information Technology","volume":"9 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation, Control, and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT.2018.8672584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Database performance is a primary branch of information technology which deals with the proper management of the database. The primary goal of the data management is to provide the organizations daily routines with powerful applications that have to be run efficiently. Performance optimization has a critical role in improving the database usage. In particular, managing the massive amount of data generated daily by various users. The main target of this research is to evaluate the data partitioning technique in enhancing the performance of quires submitted to large databases. The encouraging results show that data partitioning could improve the performance of DBMS which manages massive databases. The experiments reveal that data partitioning has a remarkable impact on the query execution time in big databases, which exceeds 35% compared to small database size or not partitioned database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用表分区技术优化数据库查询性能
数据库性能是信息技术的一个主要分支,它处理数据库的适当管理。数据管理的主要目标是为组织的日常工作提供必须高效运行的强大应用程序。性能优化在提高数据库使用率方面起着关键作用。特别是管理各种用户每天产生的大量数据。本研究的主要目标是评估数据分区技术在提高提交给大型数据库的查询性能方面的作用。结果表明,数据分区可以提高管理海量数据库的数据库管理系统的性能。实验表明,在大型数据库中,数据分区对查询执行时间的影响显著,与小型数据库或未分区的数据库相比,数据分区对查询执行时间的影响超过35%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Analytical Hierarchical Process Model to Select Programming Language for Novice Programmers for Data Analytics Applications Optimizing Database Query Performance Using Table Partitioning Techniques A Proposed Wireless Intrusion Detection Prevention and Attack System The Role of E-diagnosis Knowledge Based System on Omani Society: Skin Disease as Case An Effective Personal Identification System Using Hand Dorsal Modality and Deep Learning Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1