Distance-Based Mean Filter for Image Denoising

N. M. Hong, Nguyen Thanh
{"title":"Distance-Based Mean Filter for Image Denoising","authors":"N. M. Hong, Nguyen Thanh","doi":"10.1145/3380688.3380704","DOIUrl":null,"url":null,"abstract":"In this paper, we propose distance-based mean filter (DBMF) to remove the salt and pepper noise. Although DBMF also uses the adaptive conditions like AMF, it uses distance-based mean instead of median. The distance-based mean focuses on similarity of pixels based on distance. It also skips noisy pixels from evaluating new gray value. Hence, DBMF works more effectively than AMF. In the experiments, we test on 20 images of the MATLAB library with various noise levels. We also compare denoising results of DBMF with other similar denoising methods based on the peak signal-to-noise ratio and the structure similarity metrics. The results showed that DBMF can effectively remove noise with various noise levels and outperforms other methods.","PeriodicalId":414793,"journal":{"name":"Proceedings of the 4th International Conference on Machine Learning and Soft Computing","volume":"3 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Machine Learning and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3380688.3380704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose distance-based mean filter (DBMF) to remove the salt and pepper noise. Although DBMF also uses the adaptive conditions like AMF, it uses distance-based mean instead of median. The distance-based mean focuses on similarity of pixels based on distance. It also skips noisy pixels from evaluating new gray value. Hence, DBMF works more effectively than AMF. In the experiments, we test on 20 images of the MATLAB library with various noise levels. We also compare denoising results of DBMF with other similar denoising methods based on the peak signal-to-noise ratio and the structure similarity metrics. The results showed that DBMF can effectively remove noise with various noise levels and outperforms other methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于距离的均值滤波图像去噪
在本文中,我们提出了基于距离的均值滤波(DBMF)来去除椒盐噪声。虽然DBMF也使用像AMF这样的自适应条件,但它使用基于距离的均值而不是中值。基于距离的均值关注的是基于距离的像素相似度。它还跳过了评估新灰度值的噪声像素。因此,DBMF比AMF更有效。在实验中,我们对MATLAB库的20幅图像进行了不同噪声水平的测试。我们还基于峰值信噪比和结构相似度指标比较了DBMF与其他类似去噪方法的去噪结果。结果表明,DBMF能有效去除各种噪声水平的噪声,优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video-based Skeletal Feature Extraction for Hand Gesture Recognition An Effectual Sentiment Analysis for High Classification Rates Using Medical Image Processing Learning Question Similarity Diabetic Retinopathy Detection using Deep Learning A Study on the Effect of Fuzzy Membership Function on Fuzzified RIPPER for Stock Market Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1