Machine Learning Techniques for Autism Spectrum Disorder: current trends and future directions

Kainat Khan, R. Katarya
{"title":"Machine Learning Techniques for Autism Spectrum Disorder: current trends and future directions","authors":"Kainat Khan, R. Katarya","doi":"10.1109/ICITIIT57246.2023.10068658","DOIUrl":null,"url":null,"abstract":"ASD or autism spectrum disorder is a critical neuro-developmental disorder that hinders an individual's capability of social communication and interaction. This disorder has acquired considerable attention and importance due to its ubiquity among individuals covering all the countries worldwide. Individuals with ASD struggles in daily life activities. Detection of autism with the help of medical tests is a tedious and very costly task. However, detection and care of ASD still remains unfamiliar due to inadequate awareness, knowledge among the society, limited number of diagnostic devices and limited verbal therapy services for ASD patients. This paper investigates and displays reviews of various machine learning approaches on extracting useful data associated with distinctive characteristics of ASD such as brain functioning, hyperactivitperactivity, language disability, etc. Current researches reveal that analysis of biological traits by employing machine learning techniques have helped in the progress of early detection of ASD. ABIDE dataset is very much explored for the research in ASD. Additionally, numerous studies for the advancement of tools are still in progression. The presented research work can remarkably aid future studies on machine learning for ASD.","PeriodicalId":170485,"journal":{"name":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT57246.2023.10068658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ASD or autism spectrum disorder is a critical neuro-developmental disorder that hinders an individual's capability of social communication and interaction. This disorder has acquired considerable attention and importance due to its ubiquity among individuals covering all the countries worldwide. Individuals with ASD struggles in daily life activities. Detection of autism with the help of medical tests is a tedious and very costly task. However, detection and care of ASD still remains unfamiliar due to inadequate awareness, knowledge among the society, limited number of diagnostic devices and limited verbal therapy services for ASD patients. This paper investigates and displays reviews of various machine learning approaches on extracting useful data associated with distinctive characteristics of ASD such as brain functioning, hyperactivitperactivity, language disability, etc. Current researches reveal that analysis of biological traits by employing machine learning techniques have helped in the progress of early detection of ASD. ABIDE dataset is very much explored for the research in ASD. Additionally, numerous studies for the advancement of tools are still in progression. The presented research work can remarkably aid future studies on machine learning for ASD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自闭症谱系障碍的机器学习技术:当前趋势和未来方向
ASD或自闭症谱系障碍是一种严重的神经发育障碍,它阻碍了个体的社会沟通和互动能力。由于这种疾病在全世界所有国家的个人中普遍存在,因此引起了相当大的关注和重视。自闭症患者在日常生活活动中挣扎。借助医学测试来检测自闭症是一项繁琐而昂贵的任务。然而,由于社会对ASD的认识和知识不足,诊断设备数量有限,对ASD患者的言语治疗服务有限,ASD的检测和护理仍然不熟悉。本文调查并展示了各种机器学习方法在提取与ASD显著特征(如脑功能、多动、语言障碍等)相关的有用数据方面的综述。目前的研究表明,利用机器学习技术分析生物学性状有助于ASD的早期检测。在ASD的研究中,人们对ABIDE数据集进行了大量的探索。此外,许多关于工具进步的研究仍在进行中。本研究对ASD机器学习的未来研究具有重要的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Enhanced Hybrid Scheme for IP Traceback Design of a Crop Disease Detection Model using Multi-parametric Bio-inspired Feature Representation and Ensemble Classification A Truncated SVD Framework for Online Hate Speech Detection on the ETHOS Dataset Self-Driving Car: Simulation of Highly Automated Vehicle Technology using Convolution Neural Networks Mutable Blockchain for Identity Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1