{"title":"Heuristic Algorithms for the Longest Filled Common Subsequence Problem","authors":"R. Mincu, Alexandru Popa","doi":"10.1109/SYNASC.2018.00075","DOIUrl":null,"url":null,"abstract":"At CPM 2017, Castelli et al. define and study a new variant of the Longest Common Subsequence Problem, termed the Longest Filled Common Subsequence Problem (LFCS). For the LFCS problem, the input consists of two strings A and B and a multiset of characters M. The goal is to insert the characters from M into the string B, thus obtaining a new string B^*, such that the Longest Common Subsequence (LCS) between A and B^* is maximized. Casteli et al. show that the problem is NP-hard and provide a 3/5-approximation algorithm for the problem. In this paper we study the problem from the experimental point of view. We introduce, implement and test new heuristic algorithms and compare them with the approximation algorithm of Casteli et al. Moreover, we introduce an Integer Linear Program (ILP) model for the problem and we use the state of the art ILP solver, Gurobi, to obtain exact solution for moderate sized instances.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
At CPM 2017, Castelli et al. define and study a new variant of the Longest Common Subsequence Problem, termed the Longest Filled Common Subsequence Problem (LFCS). For the LFCS problem, the input consists of two strings A and B and a multiset of characters M. The goal is to insert the characters from M into the string B, thus obtaining a new string B^*, such that the Longest Common Subsequence (LCS) between A and B^* is maximized. Casteli et al. show that the problem is NP-hard and provide a 3/5-approximation algorithm for the problem. In this paper we study the problem from the experimental point of view. We introduce, implement and test new heuristic algorithms and compare them with the approximation algorithm of Casteli et al. Moreover, we introduce an Integer Linear Program (ILP) model for the problem and we use the state of the art ILP solver, Gurobi, to obtain exact solution for moderate sized instances.