An incremental network construction algorithm for approximating discontinuous functions

Hyukjoon Lee, K. Mehrotra, C. Mohan, S. Ranka
{"title":"An incremental network construction algorithm for approximating discontinuous functions","authors":"Hyukjoon Lee, K. Mehrotra, C. Mohan, S. Ranka","doi":"10.1109/ICNN.1994.374556","DOIUrl":null,"url":null,"abstract":"Traditional neural network training techniques do not work well on problems with many discontinuities, such as those that arise in multicomputer communication cost modeling. We develop a new algorithm to solve this problem. This algorithm incrementally adds modules to the network, successively expanding the 'window' in the data space where the current module works well. The need for a new module is automatically recognized by the system. This algorithm performs very well on problems with many discontinuities, and requires fewer computations than traditional backpropagation.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Traditional neural network training techniques do not work well on problems with many discontinuities, such as those that arise in multicomputer communication cost modeling. We develop a new algorithm to solve this problem. This algorithm incrementally adds modules to the network, successively expanding the 'window' in the data space where the current module works well. The need for a new module is automatically recognized by the system. This algorithm performs very well on problems with many discontinuities, and requires fewer computations than traditional backpropagation.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种逼近不连续函数的增量网络构造算法
传统的神经网络训练技术不能很好地解决具有许多不连续的问题,例如在多计算机通信成本建模中出现的问题。我们开发了一种新的算法来解决这个问题。该算法逐步将模块添加到网络中,依次扩展数据空间中当前模块工作良好的“窗口”。系统自动识别新模块的需求。该算法在具有许多不连续的问题上表现良好,并且比传统的反向传播需要更少的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A neural network model of the binocular fusion in the human vision Neural network hardware performance criteria Accelerating the training of feedforward neural networks using generalized Hebbian rules for initializing the internal representations Improving generalization performance by information minimization Improvement of speed control performance using PID type neurocontroller in an electric vehicle system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1