SeekSuspect

Aayush Jain, Meet Shah, Suraj Pandey, Mansi Agarwal, R. Shah, Yifang Yin
{"title":"SeekSuspect","authors":"Aayush Jain, Meet Shah, Suraj Pandey, Mansi Agarwal, R. Shah, Yifang Yin","doi":"10.1145/3444685.3446252","DOIUrl":null,"url":null,"abstract":"It is crucial for the police department to automatically determine if suspects are present in the criminal database, sometimes based on the informant's visual memory alone. FaceFetch [15] is a state-of-the-art face retrieval system capable of retrieving an envisioned face from a large-scale database. Although FaceFetch can retrieve images effectively, it lacks sophisticated techniques to produce results efficiently. To this end, we propose SeekSuspect, a faster interactive suspect retrieval framework, which introduces several optimization algorithms to FaceFetch's framework. We train and test our system on a real-world dataset curated in collaboration with a metropolitan police department in India. Results reveal that SeekSuspect beats FaceFetch and can be employed by law enforcement agencies to retrieve suspects.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

It is crucial for the police department to automatically determine if suspects are present in the criminal database, sometimes based on the informant's visual memory alone. FaceFetch [15] is a state-of-the-art face retrieval system capable of retrieving an envisioned face from a large-scale database. Although FaceFetch can retrieve images effectively, it lacks sophisticated techniques to produce results efficiently. To this end, we propose SeekSuspect, a faster interactive suspect retrieval framework, which introduces several optimization algorithms to FaceFetch's framework. We train and test our system on a real-world dataset curated in collaboration with a metropolitan police department in India. Results reveal that SeekSuspect beats FaceFetch and can be employed by law enforcement agencies to retrieve suspects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1