Evolutionary Multi-objective Optimization of Substation Maintenance using Markov Model

C. Chang, F. Yang
{"title":"Evolutionary Multi-objective Optimization of Substation Maintenance using Markov Model","authors":"C. Chang, F. Yang","doi":"10.1109/ISAP.2007.4441597","DOIUrl":null,"url":null,"abstract":"Improving the reliability and reducing the overall cost are two important but often conflicting objectives for substations. Proper scheduling of preventive maintenance provides an effective means to tradeoff between the two objectives. In this paper, Pareto-based multi-objective evolutionary algorithms are proposed to optimize the maintenance activities because of their abilities of robust search towards best-compromise solutions for large-size optimization problems. Markov model is proposed to predict the deterioration process, maintenance operations, and availability of individual components. Minimum cut sets method is employed to identify the critical components by evaluating the overall reliability of interconnected systems. Pareto-fronts are generated for comparisons with other substation configurations. Results for four different substation configurations are presented to demonstrate potentials of the proposed approach for handling more complicated configurations.","PeriodicalId":320068,"journal":{"name":"2007 International Conference on Intelligent Systems Applications to Power Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Intelligent Systems Applications to Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP.2007.4441597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Improving the reliability and reducing the overall cost are two important but often conflicting objectives for substations. Proper scheduling of preventive maintenance provides an effective means to tradeoff between the two objectives. In this paper, Pareto-based multi-objective evolutionary algorithms are proposed to optimize the maintenance activities because of their abilities of robust search towards best-compromise solutions for large-size optimization problems. Markov model is proposed to predict the deterioration process, maintenance operations, and availability of individual components. Minimum cut sets method is employed to identify the critical components by evaluating the overall reliability of interconnected systems. Pareto-fronts are generated for comparisons with other substation configurations. Results for four different substation configurations are presented to demonstrate potentials of the proposed approach for handling more complicated configurations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于马尔可夫模型的变电站维护多目标进化优化
提高可靠性和降低总成本是变电站的两个重要但往往相互冲突的目标。适当的预防性维护计划是在这两个目标之间进行权衡的有效手段。本文提出了基于pareto的多目标进化算法,该算法具有鲁棒搜索大型优化问题的最佳妥协解的能力。提出了马尔可夫模型来预测各个部件的劣化过程、维修操作和可用性。采用最小割集法,通过评估互联系统的整体可靠性来识别关键部件。生成帕累托前沿是为了与其他变电站配置进行比较。结果为四种不同的变电站配置提出,以证明潜力提出的方法处理更复杂的配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Online Estimate of System Parameters For Adaptive Tuning on Automatic Generation Control Exploiting Multi-agent System Technology within an Autonomous Regional Active Network Management System PC Cluster based Parallel PSO Algorithm for Optimal Power Flow MFFN based Static Synchronous Series Compensator (SSSC) for Transient Stability improvement Reactive Power Management in Offshore Wind Farms by Adaptive PSO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1