Yield Curve Quantization and Simulation with Neural Networks

G. Benedetti
{"title":"Yield Curve Quantization and Simulation with Neural Networks","authors":"G. Benedetti","doi":"10.2139/ssrn.3577555","DOIUrl":null,"url":null,"abstract":"We present a method for simulating yield curve dynamics by learning the curve distribution from historical data using Artificial Neural Networks (ANN) in a two step procedure. The first step involves an autoencoder which performs a quantization of curve moves, generating a set of representative curve shapes. The second step learns a probability distribution over the quantized shapes, conditional on the current curve and the shift of a single pivot tenor point. This allows to simulate the curve by first drawing the the pivot tenor shift and then the shape of the curve move from its dynamic distribution. A suitable choice of regularizers allows to keep the simulation statistics close to the original data.","PeriodicalId":102139,"journal":{"name":"Other Topics Engineering Research eJournal","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Topics Engineering Research eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3577555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a method for simulating yield curve dynamics by learning the curve distribution from historical data using Artificial Neural Networks (ANN) in a two step procedure. The first step involves an autoencoder which performs a quantization of curve moves, generating a set of representative curve shapes. The second step learns a probability distribution over the quantized shapes, conditional on the current curve and the shift of a single pivot tenor point. This allows to simulate the curve by first drawing the the pivot tenor shift and then the shape of the curve move from its dynamic distribution. A suitable choice of regularizers allows to keep the simulation statistics close to the original data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的收益率曲线量化与仿真
本文提出了一种利用人工神经网络(ANN)从历史数据中学习曲线分布,分两步模拟收益率曲线动态的方法。第一步涉及一个自动编码器,它执行曲线移动的量化,生成一组具有代表性的曲线形状。第二步学习量子化形状上的概率分布,条件是当前曲线和单个枢轴中音点的移位。这允许模拟曲线,首先绘制枢轴的中音位移,然后曲线的形状从其动态分布移动。选择合适的正则化器可以使模拟统计数据接近原始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Information Sharing on Bullwhip Effect in a Non-Serial Supply Chain with Stochastic Lead Time On the Problem of the Specific Frequency of Globular Clusters A Polynomial Least Squares Multiple-Model Estimator: Simple, Optimal, Adaptive, and Practical Predicting and Improving Hydraulic Performance of Pumping Suction Intakes By Computational Fluid Dynamics (CFD) Heptamethine and Nonamethine Cyanine Dyes: Novel Synthetic Strategy, Electronic Transitions, Solvatochromic and Halochromic Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1