Filling the gaps: on the completion of sparse call detail records for mobility analysis

Sahar Hoteit, Guangshuo Chen, A. C. Viana, M. Fiore
{"title":"Filling the gaps: on the completion of sparse call detail records for mobility analysis","authors":"Sahar Hoteit, Guangshuo Chen, A. C. Viana, M. Fiore","doi":"10.1145/2979683.2979685","DOIUrl":null,"url":null,"abstract":"Call Detail Records (CDRs) have been widely used in the last decades for studying different aspects of human mobility. The accuracy of CDRs strongly depends on the user-network interaction frequency: hence, the temporal and spatial sparsity that typically characterize CDR can introduce a bias in the mobility analysis. In this paper, we evaluate the bias induced by the use of CDRs for inferring important locations of mobile subscribers, as well as their complete trajectories. Besides, we propose a novel technique for estimating real human trajectories from sparse CDRs. Compared to previous solutions in the literature, our proposed technique reduces the error between real and estimated human trajectories and at the same time shortens the temporal period where users' locations remain undefined.","PeriodicalId":350119,"journal":{"name":"Proceedings of the Eleventh ACM Workshop on Challenged Networks","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh ACM Workshop on Challenged Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2979683.2979685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Call Detail Records (CDRs) have been widely used in the last decades for studying different aspects of human mobility. The accuracy of CDRs strongly depends on the user-network interaction frequency: hence, the temporal and spatial sparsity that typically characterize CDR can introduce a bias in the mobility analysis. In this paper, we evaluate the bias induced by the use of CDRs for inferring important locations of mobile subscribers, as well as their complete trajectories. Besides, we propose a novel technique for estimating real human trajectories from sparse CDRs. Compared to previous solutions in the literature, our proposed technique reduces the error between real and estimated human trajectories and at the same time shortens the temporal period where users' locations remain undefined.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
填补空白:完成稀疏的呼叫详细记录,用于移动性分析
呼叫详细记录(CDRs)在过去几十年中被广泛用于研究人类移动的各个方面。CDR的准确性在很大程度上取决于用户网络交互频率:因此,典型的CDR特征的时间和空间稀疏性可能会在流动性分析中引入偏差。在本文中,我们评估了使用话单来推断移动用户的重要位置以及他们的完整轨迹所引起的偏差。此外,我们提出了一种从稀疏cdr估计真实人类轨迹的新技术。与以前的文献解决方案相比,我们提出的技术减少了真实和估计的人类轨迹之间的误差,同时缩短了用户位置不确定的时间周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunistic iot for monitoring of grazing cattle: demo Towards even coverage monitoring with opportunistic sensor networks Filling the gaps: on the completion of sparse call detail records for mobility analysis Streaming content from a vehicular cloud Connected placement of disaster shelters in modern cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1