Theoretical Limits on the Success of Lexicase Selection Under Contradictory Objectives

Shakiba Shahbandegan, Emily L. Dolson
{"title":"Theoretical Limits on the Success of Lexicase Selection Under Contradictory Objectives","authors":"Shakiba Shahbandegan, Emily L. Dolson","doi":"10.1145/3583133.3590714","DOIUrl":null,"url":null,"abstract":"Lexicase selection is a state of the art parent selection technique for problems that can be broken down into multiple selection criteria. Prior work has found cases where lexicase selection fails to find a Pareto-optimal solution due to the presence of multiple objectives that contradict each other. In other cases, however, lexicase selection has performed well despite the presence of such objectives. Here, we develop theory identifying circumstances under which lexicase selection will or will not fail to find a Pareto-optimal solution. Ultimately, we find that lexicase selection can perform well under many circumstances involving contradictory objectives, but that there are limits to the parameter spaces where high performance is possible. Additionally, we show empirical evidence that epsilon-lexicase selection is much more strongly impacted by contradictory objectives. Our results inform parameter value decisions under lexicase selection and decisions about which problems to use lexicase selection for.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lexicase selection is a state of the art parent selection technique for problems that can be broken down into multiple selection criteria. Prior work has found cases where lexicase selection fails to find a Pareto-optimal solution due to the presence of multiple objectives that contradict each other. In other cases, however, lexicase selection has performed well despite the presence of such objectives. Here, we develop theory identifying circumstances under which lexicase selection will or will not fail to find a Pareto-optimal solution. Ultimately, we find that lexicase selection can perform well under many circumstances involving contradictory objectives, but that there are limits to the parameter spaces where high performance is possible. Additionally, we show empirical evidence that epsilon-lexicase selection is much more strongly impacted by contradictory objectives. Our results inform parameter value decisions under lexicase selection and decisions about which problems to use lexicase selection for.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
目标矛盾条件下词法选择成功的理论限制
Lexicase选择是一种最先进的父选择技术,用于可以分解为多个选择标准的问题。先前的工作已经发现,由于存在相互矛盾的多个目标,lexicase选择无法找到帕累托最优解。然而,在其他情况下,尽管存在这样的目标,词汇酶选择仍然表现良好。在这里,我们发展了一种理论,确定在何种情况下词法选择将会或不会失败,以找到一个帕累托最优解。最终,我们发现词法选择可以在涉及矛盾目标的许多情况下表现良好,但是可能实现高性能的参数空间是有限的。此外,我们展示的经验证据表明,epsilon-lexicase选择更强烈地受到矛盾目标的影响。我们的结果为词法选择下的参数值决策和使用词法选择解决哪些问题的决策提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Q-learning Assisted Ant Colony Optimization for Vehicle Routing Problems with Time Windows Iterative Structure-Based Genetic Programming for Neural Architecture Search Bayesian Optimization For Choice Data Exploring Adaptive Components of SOMA Evaluation of the impact of various modifications to CMA-ES that facilitate its theoretical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1