A Variant of Unified Bare Bone Particle Swarm Optimizer

Chang-Huang Chen
{"title":"A Variant of Unified Bare Bone Particle Swarm Optimizer","authors":"Chang-Huang Chen","doi":"10.1109/PDCAT.2013.10","DOIUrl":null,"url":null,"abstract":"The simplicity of bare bone particle swarm optimization (BPSO) is attractive since no parameters tuning is required. Nevertheless, it also encounters the issue of premature convergence. To remedy this problem, by integrated global model and local model search strategies, a unified bare bone particle swarm optimization (UBPSO) is appeared in recently where the weightings of global and local search strategies may be constant or random varying. In this paper, a variant of UBPSO is proposed that stresses on global exploration ability in early stages and turns to local exploitation in later stages for searching optimal solution. Numerical results reveal that this variant is competitive to UBPSO and performs better than BPSO and PSO in most of the tested benchmark functions.","PeriodicalId":187974,"journal":{"name":"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2013.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The simplicity of bare bone particle swarm optimization (BPSO) is attractive since no parameters tuning is required. Nevertheless, it also encounters the issue of premature convergence. To remedy this problem, by integrated global model and local model search strategies, a unified bare bone particle swarm optimization (UBPSO) is appeared in recently where the weightings of global and local search strategies may be constant or random varying. In this paper, a variant of UBPSO is proposed that stresses on global exploration ability in early stages and turns to local exploitation in later stages for searching optimal solution. Numerical results reveal that this variant is competitive to UBPSO and performs better than BPSO and PSO in most of the tested benchmark functions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
统一裸骨粒子群优化器的一种变体
裸骨粒子群优化(BPSO)的简单性很有吸引力,因为不需要调整参数。然而,它也遇到了过早收敛的问题。为了解决这一问题,最近出现了一种统一的裸骨粒子群优化(UBPSO),通过整合全局模型和局部模型搜索策略,全局和局部搜索策略的权重可以是恒定的,也可以是随机变化的。本文提出了一种改进的UBPSO,前期注重全局勘探能力,后期转向局部开发,以寻找最优解。数值结果表明,该算法在大多数测试的基准函数中表现优于BPSO和PSO。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulated-Annealing Load Balancing for Resource Allocation in Cloud Environments A Parallel Algorithm for 2D Square Packing Ten Years of Research on Fault Management in Grid Computing: A Systematic Mapping Study cHPP controller: A High Performance Hyper-node Hardware Accelerator Service Availability for Various Forwarded Descriptions with Dynamic Buffering on Peer-to-Peer Streaming Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1