Memory energy management for an enterprise decision support system

Karthik Kumar, K. Doshi, Martin Dimitrov, Yung-Hsiang Lu
{"title":"Memory energy management for an enterprise decision support system","authors":"Karthik Kumar, K. Doshi, Martin Dimitrov, Yung-Hsiang Lu","doi":"10.1109/ISLPED.2011.5993649","DOIUrl":null,"url":null,"abstract":"Energy efficiency is an important factor in designing and configuring enterprise servers. In these servers, memory may consume 40% of the total system power. Different memory configurations (sizes, numbers of ranks, speeds, etc.) can have significant impacts on the performance and energy consumption of enterprise workloads. Many of these workloads, such as decision support systems (DSS), require large amounts of memory. This paper investigates the potential to save energy by making the memory configuration adaptive to workload behavior. We present a case study on how memory configurations affect energy consumption and performance for running DSS. We measure the energy consumption and performance of a commercial enterprise server, and develop a model to describe the conditions when energy can be saved with acceptable performance degradation. Using this model, we identify opportunities to save energy in future enterprise servers.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993649","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Energy efficiency is an important factor in designing and configuring enterprise servers. In these servers, memory may consume 40% of the total system power. Different memory configurations (sizes, numbers of ranks, speeds, etc.) can have significant impacts on the performance and energy consumption of enterprise workloads. Many of these workloads, such as decision support systems (DSS), require large amounts of memory. This paper investigates the potential to save energy by making the memory configuration adaptive to workload behavior. We present a case study on how memory configurations affect energy consumption and performance for running DSS. We measure the energy consumption and performance of a commercial enterprise server, and develop a model to describe the conditions when energy can be saved with acceptable performance degradation. Using this model, we identify opportunities to save energy in future enterprise servers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
企业决策支持系统的内存能量管理
在设计和配置企业服务器时,能源效率是一个重要因素。在这些服务器中,内存可能会消耗系统总功率的40%。不同的内存配置(大小、等级数量、速度等)会对企业工作负载的性能和能耗产生重大影响。许多这样的工作负载,比如决策支持系统(DSS),都需要大量的内存。本文研究了通过使内存配置适应工作负载行为来节省能源的可能性。我们提供了一个关于内存配置如何影响运行DSS的能耗和性能的案例研究。我们测量了商业企业服务器的能耗和性能,并开发了一个模型来描述在可接受的性能下降的情况下节省能源的条件。通过使用这个模型,我们发现了在未来的企业服务器中节省能源的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Processor caches built using multi-level spin-transfer torque RAM cells Object-based local dimming for LCD systems with LED BLUs Near-/sub-threshold DLL-based clock generator with PVT-aware locking range compensation Learning to manage combined energy supply systems An energy-efficient adaptive hybrid cache
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1