Instruction set extension and hardware acceleration for SVM application toward a vector processor

Yalong Pang, Jun Han, Jianmin Zeng, Yujie Huang, Xiaoyang Zeng
{"title":"Instruction set extension and hardware acceleration for SVM application toward a vector processor","authors":"Yalong Pang, Jun Han, Jianmin Zeng, Yujie Huang, Xiaoyang Zeng","doi":"10.1109/ISOCC.2017.8368818","DOIUrl":null,"url":null,"abstract":"This paper presents instruction set extension and hardware acceleration for SVM application toward a vector processor. Based on the nyuzi processor, we customize the corresponding hardware acceleration unit, namely, kernel function processing unit (KPU), both supporting the linear kernel function and radial basis function (RBF) kernel. This work we utilize the mask vector to realize the exponential computation, and the total RBF kernel is completed with only approximately 35 basic instructions. The design is synthesized with SMIC 65nm CMOS technology, requiring 887 equivalent kGates and the max frequency is 540MHz. The simulation results show that with KPU the cycles of SVM training is obviously decreased and speedup is 2.62.","PeriodicalId":248826,"journal":{"name":"2017 International SoC Design Conference (ISOCC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2017.8368818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents instruction set extension and hardware acceleration for SVM application toward a vector processor. Based on the nyuzi processor, we customize the corresponding hardware acceleration unit, namely, kernel function processing unit (KPU), both supporting the linear kernel function and radial basis function (RBF) kernel. This work we utilize the mask vector to realize the exponential computation, and the total RBF kernel is completed with only approximately 35 basic instructions. The design is synthesized with SMIC 65nm CMOS technology, requiring 887 equivalent kGates and the max frequency is 540MHz. The simulation results show that with KPU the cycles of SVM training is obviously decreased and speedup is 2.62.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向矢量处理器的支持向量机应用的指令集扩展和硬件加速
本文介绍了支持向量机在矢量处理器上的指令集扩展和硬件加速。在nyuzi处理器的基础上,我们定制了相应的硬件加速单元,即核函数处理单元(KPU),既支持线性核函数,也支持径向基函数(RBF)内核。本文利用掩模向量实现指数计算,仅用大约35条基本指令就完成了整个RBF核。本设计采用中芯国际65nm CMOS技术合成,需要887等效kGates,最大频率为540MHz。仿真结果表明,使用KPU后,支持向量机的训练周期明显缩短,加速率为2.62。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Memory efficient self guided image filtering A fully-digital phase modulator with phase calibration loop for high data-rate systems Development of SoC virtual platform for IoT terminals based on OneM2M Hardware feasible offset and gain error correction for time-interleaved ADC A design of ultra-low noise LDO using noise reduction network techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1