Analyzing Deep CNN-Based Utterance Embeddings for Acoustic Model Adaptation

Joanna Rownicka, P. Bell, S. Renals
{"title":"Analyzing Deep CNN-Based Utterance Embeddings for Acoustic Model Adaptation","authors":"Joanna Rownicka, P. Bell, S. Renals","doi":"10.1109/SLT.2018.8639036","DOIUrl":null,"url":null,"abstract":"We explore why deep convolutional neural networks (CNNs) with small two-dimensional kernels, primarily used for modeling spatial relations in images, are also effective in speech recognition. We analyze the representations learned by deep CNNs and compare them with deep neural network (DNN) representations and i-vectors, in the context of acoustic model adaptation. To explore whether interpretable information can be decoded from the learned representations we evaluate their ability to discriminate between speakers, acoustic conditions, noise type, and gender using the Aurora-4 dataset. We extract both whole model embeddings (to capture the information learned across the whole network) and layer-specific embeddings which enable understanding of the flow of information across the network. We also use learned representations as the additional input for a time-delay neural network (TDNN) for the Aurora-4 and MGB-3 English datasets. We find that deep CNN embeddings outperform DNN embeddings for acoustic model adaptation and auxiliary features based on deep CNN embeddings result in similar word error rates to i-vectors.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

We explore why deep convolutional neural networks (CNNs) with small two-dimensional kernels, primarily used for modeling spatial relations in images, are also effective in speech recognition. We analyze the representations learned by deep CNNs and compare them with deep neural network (DNN) representations and i-vectors, in the context of acoustic model adaptation. To explore whether interpretable information can be decoded from the learned representations we evaluate their ability to discriminate between speakers, acoustic conditions, noise type, and gender using the Aurora-4 dataset. We extract both whole model embeddings (to capture the information learned across the whole network) and layer-specific embeddings which enable understanding of the flow of information across the network. We also use learned representations as the additional input for a time-delay neural network (TDNN) for the Aurora-4 and MGB-3 English datasets. We find that deep CNN embeddings outperform DNN embeddings for acoustic model adaptation and auxiliary features based on deep CNN embeddings result in similar word error rates to i-vectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于cnn的深度语音嵌入声学模型自适应分析
我们探讨了为什么具有小二维核的深度卷积神经网络(cnn),主要用于图像中的空间关系建模,在语音识别中也很有效。在声学模型自适应的背景下,我们分析了深度cnn学习到的表征,并将其与深度神经网络(DNN)表征和i向量进行了比较。为了探索是否可以从学习表征中解码可解释的信息,我们使用Aurora-4数据集评估了它们区分说话者、声学条件、噪声类型和性别的能力。我们提取了整个模型嵌入(以捕获整个网络中学习到的信息)和特定于层的嵌入,这些嵌入使我们能够理解整个网络中的信息流。我们还使用学习表征作为附加输入,用于Aurora-4和MGB-3英语数据集的延时神经网络(TDNN)。我们发现深度CNN嵌入在声学模型自适应方面优于DNN嵌入,并且基于深度CNN嵌入的辅助特征导致与i-vectors相似的单词错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sequence Teacher-Student Training of Acoustic Models for Automatic Free Speaking Language Assessment Leveraging Sequence-to-Sequence Speech Synthesis for Enhancing Acoustic-to-Word Speech Recognition Dynamic Extension of ASR Lexicon Using Wikipedia Data Detection and Calibration of Whisper for Speaker Recognition Out-of-Domain Slot Value Detection for Spoken Dialogue Systems with Context Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1