Online sliding-window based for training MLP networks using advanced conjugate gradient

H. Izzeldin, V. Asirvadam, N. Saad
{"title":"Online sliding-window based for training MLP networks using advanced conjugate gradient","authors":"H. Izzeldin, V. Asirvadam, N. Saad","doi":"10.1109/CSPA.2011.5759854","DOIUrl":null,"url":null,"abstract":"This paper investigates the performance of conjugate gradient algorithms with sliding-window approach for training multilayer perceptron (MLP). Online learning is implemented when the system under investigation is time varying or when it is not convenient to obtain a full history of offline data about the system variables. Sliding window framework is proposed to combine the robustness of offline learning with the ability of online learning to track time varying elements of the process under investigation. A sliding window based second order conjugate gradient algorithms SWCG is presented. The performance of SWCG is compared with a sliding window based first order back propagation SWBP.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"2012 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper investigates the performance of conjugate gradient algorithms with sliding-window approach for training multilayer perceptron (MLP). Online learning is implemented when the system under investigation is time varying or when it is not convenient to obtain a full history of offline data about the system variables. Sliding window framework is proposed to combine the robustness of offline learning with the ability of online learning to track time varying elements of the process under investigation. A sliding window based second order conjugate gradient algorithms SWCG is presented. The performance of SWCG is compared with a sliding window based first order back propagation SWBP.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线滑动窗口的先进共轭梯度MLP网络训练
研究了滑动窗法共轭梯度算法在多层感知器训练中的性能。当所研究的系统是时变的,或者当不方便获得关于系统变量的离线数据的完整历史时,可以实现在线学习。提出滑动窗口框架,将离线学习的鲁棒性与在线学习跟踪所研究过程时变元素的能力相结合。提出了一种基于滑动窗口的二阶共轭梯度算法SWCG。将SWCG的性能与基于滑动窗口的一阶反向传播SWBP进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nucleus segmentation technique for acute Leukemia An improvement of MIPS rate in detection of DTMF signals of 64 subscribers using GOERTZEL's algorithm Simple GUI design for monitoring of a remotely operated quadrotor unmanned aerial vehicle (UAV) Potential of single orthorectified of high resolution satellite image (Ikonos) for large scale mapping The classification of material mechanical properties using non-destructive vibration technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1