{"title":"Regularization networks for glucose system identification","authors":"Z. Trajanoski, P. Wach","doi":"10.1109/IEMBS.1994.415334","DOIUrl":null,"url":null,"abstract":"A framework for non-linear identification of glucose kinetics using neural networks is presented. The framework combines: recursive input-output system representation (Non-linear AutoRegressive model with eXogenous inputs (NARX)); approximation method derived from regularization theory and based on radial basis function neural networks; and validation methods for non-linear systems. System identification was performed using: (1) simulated data from a mathematical model of glucose kinetics in a diabetic state with exogenously infused soluble insulin and monomeric insulin analogues and (2) measured subcutaneous tissue glucose time-series from healthy subjects, respectively.","PeriodicalId":344622,"journal":{"name":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1994.415334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A framework for non-linear identification of glucose kinetics using neural networks is presented. The framework combines: recursive input-output system representation (Non-linear AutoRegressive model with eXogenous inputs (NARX)); approximation method derived from regularization theory and based on radial basis function neural networks; and validation methods for non-linear systems. System identification was performed using: (1) simulated data from a mathematical model of glucose kinetics in a diabetic state with exogenously infused soluble insulin and monomeric insulin analogues and (2) measured subcutaneous tissue glucose time-series from healthy subjects, respectively.