EvoGAN

Lianli Gao, Jingqiu Zhang, Jingkuan Song, Hengtao Shen
{"title":"EvoGAN","authors":"Lianli Gao, Jingqiu Zhang, Jingkuan Song, Hengtao Shen","doi":"10.1145/3444685.3446323","DOIUrl":null,"url":null,"abstract":"In biology, evolution is the gradual change in the characteristics of a species over several generations. It has two properties: 1) The change is gradual, and 2) long-term changes are relied on short-term changes. Face aging/rejuvenation, which renders younger or elder facial images, follows the principles of evolution. Inspired by this, we propose an Evolutionary GANs (EvoGAN) for face aging/rejuvenation by making each age transformation smooth and decomposing a long-term transformation into several short-terms. Specifically, since short-term facial changes are gradual and relatively easy to render, we first divide the ages into several groups (i.e., chronologically from child, adult to elder). Then, for each pair of adjacent groups, we design two age transforms for face aging and rejuvenation, which are supposed to preserve personal identify information and predict age-specific characteristics. Compared with the mainstream for face aging/rejuvenation, i.e., conditional GANs based methods utilizing one-hot age vector as an age transformation condition, our smooth EvoGAN abandons this condition and can better predict age-specific factors (e.g., the drastic shape and appearance change from an adult to a child). To evaluate our EvoGAN, we construct a challenging dataset FFHQ_Age. Extensive experiments conducted on the dataset demonstrate that our model is able to generate significantly better results than the state-of-the-art methods qualitatively and quantitatively.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In biology, evolution is the gradual change in the characteristics of a species over several generations. It has two properties: 1) The change is gradual, and 2) long-term changes are relied on short-term changes. Face aging/rejuvenation, which renders younger or elder facial images, follows the principles of evolution. Inspired by this, we propose an Evolutionary GANs (EvoGAN) for face aging/rejuvenation by making each age transformation smooth and decomposing a long-term transformation into several short-terms. Specifically, since short-term facial changes are gradual and relatively easy to render, we first divide the ages into several groups (i.e., chronologically from child, adult to elder). Then, for each pair of adjacent groups, we design two age transforms for face aging and rejuvenation, which are supposed to preserve personal identify information and predict age-specific characteristics. Compared with the mainstream for face aging/rejuvenation, i.e., conditional GANs based methods utilizing one-hot age vector as an age transformation condition, our smooth EvoGAN abandons this condition and can better predict age-specific factors (e.g., the drastic shape and appearance change from an adult to a child). To evaluate our EvoGAN, we construct a challenging dataset FFHQ_Age. Extensive experiments conducted on the dataset demonstrate that our model is able to generate significantly better results than the state-of-the-art methods qualitatively and quantitatively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1