Applying Machine Learning Methods to Identify Injection Intervals Using DTS Data

A. Sadretdinov, R. Valiullin, R. Yarullin
{"title":"Applying Machine Learning Methods to Identify Injection Intervals Using DTS Data","authors":"A. Sadretdinov, R. Valiullin, R. Yarullin","doi":"10.3997/2214-4609.202054021","DOIUrl":null,"url":null,"abstract":"Summary The problem of determining the intervals of fluid loss in an injection horizontal well is solved. The chosen setting is one of the simplest from the point of view of the ongoing processes. The successful solution of the problem using machine learning methods should show the perspective of the approach for solving more complex problems. The chosen approach to solving the problem involves training models on a synthetic sample obtained using a thermohydrodynamic simulator. The results of the algorithm operation are demonstrated, which can be assessed as successful.","PeriodicalId":281085,"journal":{"name":"Data Science in Oil & Gas","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Science in Oil & Gas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202054021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary The problem of determining the intervals of fluid loss in an injection horizontal well is solved. The chosen setting is one of the simplest from the point of view of the ongoing processes. The successful solution of the problem using machine learning methods should show the perspective of the approach for solving more complex problems. The chosen approach to solving the problem involves training models on a synthetic sample obtained using a thermohydrodynamic simulator. The results of the algorithm operation are demonstrated, which can be assessed as successful.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用机器学习方法识别DTS数据注入间隔
解决了水平井注水井失液层段的确定问题。从正在进行的流程的角度来看,所选择的设置是最简单的设置之一。使用机器学习方法成功解决问题应该显示出解决更复杂问题的方法的视角。所选择的解决问题的方法是在使用热流体模拟器获得的合成样品上训练模型。最后对算法的运行结果进行了验证,表明该算法是成功的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying Machine Learning Methods to Identify Injection Intervals Using DTS Data Metric for evaluating difference between seismic gathers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1